5-cubic Honeycomb
   HOME

TheInfoList



OR:

In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 5-space. Four
5-cube In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts, ...
s meet at each cubic cell, and it is more explicitly called an ''order-4 penteractic honeycomb''. It is analogous to the square tiling of the plane and to the cubic honeycomb of
3-space Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
, and the tesseractic honeycomb of 4-space.


Constructions

There are many different Wythoff constructions of this honeycomb. The most symmetric form is
regular The term regular can mean normal or in accordance with rules. It may refer to: People * Moses Regular (born 1971), America football player Arts, entertainment, and media Music * "Regular" (Badfinger song) * Regular tunings of stringed instrum ...
, with
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
. Another form has two alternating
5-cube In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts, ...
facets (like a checkerboard) with Schläfli symbol . The lowest symmetry Wythoff construction has 32 types of facets around each vertex and a prismatic product Schläfli symbol 5.


Related polytopes and honeycombs

The ,33,4 , Coxeter group generates 63 permutations of uniform tessellations, 35 with unique symmetry and 34 with unique geometry. The expanded 5-cubic honeycomb is geometrically identical to the 5-cubic honeycomb. The ''5-cubic honeycomb'' can be alternated into the
5-demicubic honeycomb The 5-demicube honeycomb (or demipenteractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb. It is the first tessellation in the dem ...
, replacing the 5-cubes with
5-demicube In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5- ...
s, and the alternated gaps are filled by
5-orthoplex In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular with ...
facets. It is also related to the regular 6-cube which exists in 6-space with ''3'' ''5''-cubes on each cell. This could be considered as a tessellation on the 5-sphere, an ''order-3 penteractic honeycomb'', .


Tritruncated 5-cubic honeycomb

A tritruncated 5-cubic honeycomb, , contains all bitruncated 5-orthoplex facets and is the Voronoi tessellation of the D5* lattice. Facets can be identically colored from a doubled _5×2, 4,33,4 symmetry, alternately colored from _5, ,33,4symmetry, three colors from _5, ,3,3,31,1symmetry, and 4 colors from _5, 1,1,3,31,1symmetry.


See also

*
List of regular polytopes This article lists the regular polytopes and regular polytope compounds in Euclidean geometry, Euclidean, spherical geometry, spherical and hyperbolic geometry, hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an ' ...
Regular and uniform honeycombs in 5-space: *
5-demicubic honeycomb The 5-demicube honeycomb (or demipenteractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb. It is the first tessellation in the dem ...
*
5-simplex honeycomb In Five-dimensional space, five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation (or honeycomb (geometry), honeycomb or pentacomb). Each vertex is shared by 12 5-simplexes, 30 rectified ...
*
Truncated 5-simplex honeycomb In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation (or honeycomb). It is composed of 5-simplex, truncated 5-simplex, and bitruncated 5-simplex fac ...
* Omnitruncated 5-simplex honeycomb


References

* Coxeter, H.S.M. '' Regular Polytopes'', (3rd edition, 1973), Dover edition, p. 296, Table II: Regular honeycombs * Kaleidoscopes: Selected Writings of
H. S. M. Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century. Biography Coxeter was born in Kensington t ...
, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,

** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', ath. Zeit. 200 (1988) 3-45 {{Honeycombs Honeycombs (geometry) 6-polytopes Regular tessellations