HOME

TheInfoList



OR:

4-dimensional printing (4D printing; also known as 4D bioprinting, active origami, or shape-morphing systems) uses the same techniques of
3D printing 3D printing or additive manufacturing is the Manufacturing, construction of a three-dimensional object from a computer-aided design, CAD model or a digital 3D modeling, 3D model. It can be done in a variety of processes in which material is ...
through computer-programmed deposition of material in successive layers to create a
three-dimensional Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informal ...
object. However, in 4D printing, the resulting 3D shape is able to morph into different forms in response to environmental stimulus, with the 4th dimension being the time-dependent shape change after the printing. It is therefore a type of
programmable matter Programmable matter is matter which has the ability to change its physical properties (shape, density, moduli, conductivity, optical properties, etc.) in a programmable fashion, based upon user input or autonomous sensing. Programmable matter is ...
, wherein after the fabrication process, the printed product reacts with parameters within the environment (humidity, temperature, voltage, etc.) and changes its form accordingly.


Printing techniques

Stereolithography Stereolithography (SLA or SL; also known as vat photopolymerisation, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a lay ...
is a 3D-printing technique that uses
photopolymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many for ...
to bind substrate that has been laid layer upon layer, creating a polymeric network. As opposed to fused-deposition modeling, where the extruded material hardens immediately to form layers, 4D printing is fundamentally based in stereolithography, where in most cases ultraviolet light is used to cure the layered materials after the printing process has completed.
Anisotropy Anisotropy () is the property of a material which allows it to change or assume different properties in different directions, as opposed to isotropy. It can be defined as a difference, when measured along different axes, in a material's physic ...
is vital in engineering the direction and magnitude of transformations under a given condition, by arranging the micromaterials in a way so that there is an embedded directionality to the finished print.


Fiber architecture

Most 4D printing systems utilize a network of fibers that vary in size and material properties. 4D-printed components can be designed on the macro scale as well as the micro scale. Micro scale design is achieved through complex molecular/fiber simulations that approximate the aggregated material properties of all the materials used in the sample. The size, shape, modulus, and connection pattern of these material building blocks have a direct relationship to the deformation shape under stimulus activation.


Hydro-reactive polymers/hydro gels

Skylar Tibbits is the director of the Self-Assembly Lab at
MIT The Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. Established in 1861, MIT has played a key role in the development of modern technology and science, and is one of the mo ...
, and worked with the Stratasys Materials Group to produce a composite polymer composed of highly hydrophilic elements and non-active, highly rigid elements. The unique properties of these two disparate elements allowed up to 150% swelling of certain parts of the printed chain in water, while the rigid elements set structure and angle constraints for the transformed chain. They produced a chain that would spell "MIT" when submerged in water, and another chain that would morph into a wire frame cube when subjected to the same conditions.


= Cellulose composites

= Thiele et al. explored the possibilities of a cellulose-based material that could be responsive to humidity. They developed a bilayer film using cellulose stearoyl esters with different substitution degrees on either side. One ester had a substitution degree of 0.3 (highly
hydrophilic A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press. In contrast, hydrophobes are no ...
) and the other had a substitution degree of 3 (highly
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, th ...
.) When the sample was cooled from 50 °C to 22 °C, and the relative humidity increased from 5.9% to 35%, the hydrophobic side contracted and the hydrophilic side swelled, causing the sample to roll up tightly. This process is reversible, as reverting the temperature and humidity changes caused the sample to unroll again. Understanding anisotropic swelling and mapping the alignment of printed fibrils allowed A. Sydney Gladman ''et al''. to mimic the
nastic Nastic movements are non-directional responses to stimuli (e.g. temperature, humidity, light irradiance), and are usually associated with plants. The movement can be due to changes in turgor. Decrease in turgor pressure causes shrinkage while ...
behavior of plants. Branches, stems, bracts, and flowers respond to environmental stimuli such as humidity, light, and touch by varying the internal
turgor Turgor pressure is the force within the cell that pushes the plasma membrane against the cell wall. It is also called ''hydrostatic pressure'', and is defined as the pressure in a fluid measured at a certain point within itself when at equilibriu ...
of their cell walls and tissue composition. Taking precedent from this, the team developed a composite
hydrogel A hydrogel is a crosslinked hydrophilic polymer that does not dissolve in water. They are highly absorbent yet maintain well defined structures. These properties underpin several applications, especially in the biomedical area. Many hydrogels ar ...
architecture with local anisotropic swelling behavior that mimics the structure of a typical cell wall. Cellulose fibrils combine during the printing process into microfibrils with a high aspect ratio (~100) and an elastic modulus on the scale of 100 GPa. These microfibrils are embedded into a soft
acrylamide Acrylamide (or acrylic amide) is an organic compound with the chemical formula CH2=CHC(O)NH2. It is a white odorless solid, soluble in water and several organic solvents. From the chemistry perspective, acrylamide is a vinyl-substituted primary ...
matrix for structure. The viscoelastic ink used to print this hydrogel composite is an aqueous solution of N,N-dimethylacrylamide, nanoclay, glucose oxidase, glucose, and nanofibrillated cellulose. The nanoclay is a
rheological Rheology (; ) is the study of the flow of matter, primarily in a fluid (liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applie ...
aid that improves liquid flow, and the glucose prevents oxygen inhibition when the material is cured with ultraviolet light. Experimenting with this ink, the team created a theoretical model for a print path that dictates the orientation of cellulose fibrils, where the bottom layer of the print is parallel to the x-axis and the top layer of the print is rotated anticlockwise by an angle θ. The curvature of the sample is dependent on elastic moduli, swelling ratios, and ratios of layer thickness and bilayer thickness. Thus, the adjusted models that describe mean curvature and Gaussian curvature are, respectively, H = c_1 \frac \frac and K = -c_4 \frac \frac Gladman et al. found that as θ approaches 0°, the curvature approximates the classical Timoshenko equation and performs similarly to a
bimetallic strip A bimetallic strip is used to convert a temperature change into mechanical displacement. The strip consists of two strips of different metals which expand at different rates as they are heated. The different expansions force the flat strip to be ...
. But as θ approaches 90°, the curvature transforms into a saddle shape. Understanding this, then, the team could carefully control the effects of anisotropy and break lines of symmetry to create helicoids, ruffled profiles, and more.


Thermo-reactive polymers/hydrogels

Poly(N-isopropylacrylamide) Poly(''N''-isopropylacrylamide) (variously abbreviated PNIPA, PNIPAM, PNIPAAm, NIPA, PNIPAA or PNIPAm) is a temperature-responsive polymer that was first synthesized in the 1950s. It can be synthesized from ''N''-isopropylacrylamide which is c ...
, or pNIPAM, is a commonly used thermo-responsive material. A hydrogel of pNIPAM becomes hydrophilic and swollen in an
aqueous solution An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be re ...
of 32 °C, its low critical solution temperature. Temperatures above that start to dehydrate the hydrogel and cause it shrink, thus achieving shape transformation. Hydrogels composed of pNIPAM and some other polymer, such as 4-hydroxybutyl acrylate (4HBA,) exhibit strong reversibility, where even after 10 cycles of shape change there is no shape deformation. Shannon E. Bakarich et al. created a new type of 4D-printing ink composed of ionic covalent entanglement hydrogels that have a similar structure to standard double-network hydrogels. The first polymer network is cross-linked with metal cations, while the second is cross-linked with covalent bonds. This hydrogel is then paired with a pNIPAM network for toughening and thermal actuation. In lab testing, this gel showed a shape recovery of 41%-49% when the temperature increased , and then was restored to 20 °C. A fluid controlling smart valve printed from this material was designed to close when touching hot water and open when touching cold water. The valve successfully stayed open in cold water and reduced the flow rate of hot water by 99%. This new type of 4D-printed hydrogel is more mechanically robust than other thermally actuating hydrogels and shows potential in applications such as self-assembling structures, medical technology, soft robotics, and sensor technology.


Digital Shape-Memory Polymers

Shape-memory polymer Shape-memory polymers (SMPs) are polymeric smart materials that have the ability to return from a deformed state (temporary shape) to their original (permanent) shape when induced by an external stimulus (trigger), such as temperature change. P ...
s (SMPs) are able to recover their original shape from a deformed shape under certain circumstances, such as when exposed to a temperature for a period of time. Depending on the polymer, there may be a variety of configurations that the material may take in a number of temperature conditions. Digital SMPs utilize 3D-printing technology to precisely engineer the placement, geometry, and mixing and curing ratios of SMPs with differing properties, such as glass transition or crystal-melt transition temperatures. Yiqi Mao ''et al''. used this to create a series of digital SMP hinges that have differing prescribed thermo-mechanical and shape memory behaviors, which are grafted onto rigid, non-active materials. Thus, the team was able to develop a self-folding sample that could fold without interfering with itself, and even interlock to create a more robust structure. One of the projects include a self-folding box modeled after a USPS mailbox. Qi Ge ''et al''. designed digital SMPs based on constituents with varying rubbery moduli and glass-transition temperatures with extremely high-failure strains of up to 300% larger than existing printable materials. This allowed them to create a multi-material gripper that could grab and release an object according to a temperature input. The thick joints were made of SMPs for robustness, while the tips of the microgrippers could be designed separately to accommodate a safe contact for the object of transport.


Stress relaxation

Stress relaxation In materials science, stress relaxation is the observed decrease in stress in response to strain generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing some ...
in 4D printing is a process in which a material assembly is created under stress that becomes "stored" within the material. This stress can later be released, causing an overall material shape change.


Thermal photo-reactive polymers

This type of polymeric actuation can be described as photo-induced
stress relaxation In materials science, stress relaxation is the observed decrease in stress in response to strain generated in the structure. This is primarily due to keeping the structure in a strained condition for some finite interval of time hence causing some ...
. This technology takes advantage of temperature driven polymer bending by exposing the desired bending seams to focused strips of intense light. These bending seams are printed in a state of stress but do not deform until exposed to light. The active agent that induces bending in the material is heat transmitted by intense light. The material itself is made of chemical photo-reactive polymers. These compounds use a polymer mixture combined with a
photoinitiator A photoinitiator is a molecule that creates reactive species (free radicals, cations or anions) when exposed to radiation (UV or visible). Synthetic photoinitiators are key components in photopolymers (for example, photo-curable coatings, adhesive ...
to create an amorphous, covalent cross-linked polymer. This material is formed into sheets and loaded in tension perpendicular to the desired bending crease. The material is then exposed to a specific wavelength of light, as the
photoinitiator A photoinitiator is a molecule that creates reactive species (free radicals, cations or anions) when exposed to radiation (UV or visible). Synthetic photoinitiators are key components in photopolymers (for example, photo-curable coatings, adhesive ...
is consumed it polymerizes the remaining mixture, inducing photo initiated stress relaxation. The portion of material exposed to the light can be controlled with stencils to create specific bending patterns. It is also possible to run multiple iterations of this process using the same material sample with different loading conditions or stencil masks for each iteration. The final form will depend on the order and resulting form of each iteration.


Current applications


Biomedical

Dr. Lijie Grace Zhang's research team at the George Washington University created a new type of 4D-printable, photo-curable liquid
resin In polymer chemistry and materials science, resin is a solid or highly viscous substance of plant or synthetic origin that is typically convertible into polymers. Resins are usually mixtures of organic compounds. This article focuses on natu ...
. This resin is made of a renewable soybean-oil epoxidized acrylate compound that is also biocompatible. This resin adds to the small group of 3D-printable resins and is one of the few that are biocompatible. A laser 3D-printed sample of this resin was subjected to temperature fluctuations from -18 °C to 37 °C and exhibited full recovery of its original shape. Printed scaffolds of this material proved to be successful foundations for human bone marrow
mesenchymal stem cell Mesenchymal stem cells (MSCs) also known as mesenchymal stromal cells or medicinal signaling cells are multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage c ...
(hMSCs) growth. This material's strong qualities of shape memory effect and biocompatibility lead researchers to believe that it will strongly advance the development of biomedical scaffolds. This research article is one of the first that explore the use of plant oil polymers as liquid resins for
stereolithography Stereolithography (SLA or SL; also known as vat photopolymerisation, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a lay ...
production in biomedical applications. Research team of Leonid Ionov (University of Bayreuth) has developed novel approach to print shape-morphing biocompatible/biodegradable hydrogels with living cells. The approach allows fabrication of hollow self-folding tubes with unprecedented control over their diameters and architectures at high resolution. The versatility of the approach is demonstrated by employing two different bio polymers (alginate and hyaluronic acid) and mouse bone marrow stromal cells. Harnessing the printing and post-printing parameters allows attaining average internal tube diameters as low as 20 μm, which is not yet achievable by other existing bio printing approaches and is comparable to the diameters of the smallest blood vessels. The proposed 4D bioprinting process does not pose any negative effect on the viability of the printed cells, and the self-folded hydrogel-based tubes support cell survival for at least 7 days without any decrease in cell viability. Consequently, the presented 4D bioprinting strategy allows the fabrication of dynamically reconfigurable architectures with tunable functionality and responsiveness, governed by the selection of suitable materials and cells.


Possible Applications

There are some existing techniques/technologies that could potentially be applied and adjusted for 4D printing.


Cell Traction Force

Cell Traction Force (CTF) is a technique wherein living cells fold and move microstructures into their designed shape. This is possible through the contraction that occurs from
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over ...
polymerization and
actomyosin Myofilaments are the three protein filaments of myofibrils in muscle cells. The main proteins involved are myosin, actin, and titin. Myosin and actin are the ''contractile proteins'' and titin is an elastic protein. The myofilaments act toget ...
interactions within the cell. In natural processes, CTF regulates wound healing,
angiogenesis Angiogenesis is the physiological process through which new blood vessels form from pre-existing vessels, formed in the earlier stage of vasculogenesis. Angiogenesis continues the growth of the vasculature by processes of sprouting and splitting ...
,
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, ...
, and
inflammation Inflammation (from la, wikt:en:inflammatio#Latin, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or Irritation, irritants, and is a protective response involving im ...
. Takeuchi et al. seeded cells across two microplates, and when the glass structure was removed the cells would bridge the gap across the microplate and thus initiate self-folding. The team was able to create vessel-like geometries and even high throughput dodecahedrons with this method. There is speculation that utilizing this technique of cell origami will lead to designing and printing a cell-laden structure that can mimic their non-synthetic counterparts after the printing process has completed.


Electrical and Magnetic Smart Materials

The electrical responsive materials that exist today change their size and shape depending on the intensity and/or direction of an external electric field or applied electrical current.
Polyaniline Polyaniline (PANI) is a conducting polymer and organic semiconductor of the semi-flexible rod polymer family. The compound has been of interest since the 1980s because of its electrical conductivity and mechanical properties. Polyaniline is one of ...
and
polypyrrole Polypyrrole (PPy) is an organic polymer obtained by oxidative polymerization of pyrrole. It is a solid with the formula H(C4H2NH)nH. It is an intrinsically conducting polymer, used in electronics, optical, biological and medical fields. History ...
(PPy) are, in particular, good conducting materials and can be doped with
tetrafluoroborate Tetrafluoroborate is the anion . This tetrahedral species is isoelectronic with tetrafluoroberyllate (), tetrafluoromethane (CF4), and tetrafluoroammonium () and is valence isoelectronic with many stable and important species including the perchl ...
to contract and expand under an electric stimulus. A robot made of these materials was made to move using an electric pulse of 3V for 5 seconds, causing one leg to extend, then removing the stimulus for 10 seconds, causing the other leg to move forward. Research on
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s, which are
biocompatible Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
and highly conductive, indicates that a composite made of carbon nanotube and a shape memory specimen has a higher
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
and speed of electro-active response than either specimen alone. Shape memory composite structures incorporating highly conductive metallic surface layers have also been demonstrated to be highly electrical responsive. Due to its high electrical conductivity enabled by an electroless plated metal surface, these composites may be used in electrical devices for temperature sensing (if using a temperature-responsive shape memory polymer matrix), or as electrical safety devices. B.Q.Y. Chan ''et al.'' fabricated a multiple-temperature sensing device with various switches triggered at different temperatures. The incorporation of the metallic coating was demonstrated to have no adverse impact on the shape memory performance of the switches. Magnetically responsive ferrogels contract in the presence of a strong magnetic field and thus have applications in drug and cell delivery. The combination of
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
s and magnetically responsive particles has been bioprinted for use in promoting cell growth and adhesion, while still maintaining a strong conductivity.


Commerce and transportation

Skylar Tibbits elaborates on future applications of 4D-printed materials as programmable products that can be tailored to specific environments and respond to factors such as the temperature, humidity, pressure, and sound of one's body or environment. Tibbits also mentions the advantage of 4D-printing for shipping applications - it will allow products to be packaged flat to later have their designed shape activated on site by a simple stimulus. There is also the possibility of 4D-printed shipping containers that react to forces in transit to uniformly distribute loads. It is very likely that 4D-printed materials will be able to repair themselves after failure. These materials will be able to self-disassemble, making their constituent parts easy to recycle.


See also

*
Four-dimensional product A four-dimensional product (4D product) considers a physical product as a life-like entity capable of changing form and physical properties autonomously over time. It is an evolving field of product design practice and research linked to similar ...
*
Responsive architecture Responsive architecture is an evolving field of architectural practice and research. Responsive architectures are those that measure actual environmental conditions (via sensors) to enable buildings to adapt their form, shape, color or character re ...


References

{{reflist 3D printing