Григорий Яковлевич Перельман
   HOME

TheInfoList



OR:

Grigori Yakovlevich Perelman (, ; born 13June 1966) is a Russian
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
and geometer who is known for his contributions to the fields of
geometric analysis Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of ...
,
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
, and
geometric topology In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topo ...
. In 2005, Perelman resigned from his research post in
Steklov Institute of Mathematics Steklov Institute of Mathematics or Steklov Mathematical Institute () is a premier research institute based in Moscow, specialized in mathematics, and a part of the Russian Academy of Sciences. The institute is named after Vladimir Andreevich Stek ...
and in 2006 stated that he had quit professional mathematics, owing to feeling disappointed over the ethical standards in the field. He lives in seclusion in Saint Petersburg and has declined requests for interviews since 2006. In the 1990s, partly in collaboration with Yuri Burago, Mikhael Gromov, and Anton Petrunin, he made contributions to the study of
Alexandrov space In geometry, Alexandrov spaces with curvature ≥ ''k'' form a generalization of Riemannian manifolds with sectional curvature ≥ ''k'', where ''k'' is some real number. By definition, these spaces are locally compact complete length spaces wh ...
s. In 1994, he proved the soul conjecture in Riemannian geometry, which had been an open problem for the previous 20 years. In 2002 and 2003, he developed new techniques in the analysis of
Ricci flow In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion o ...
, and proved the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured b ...
and
Thurston's geometrization conjecture In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theor ...
, the former of which had been a famous
open problem In science and mathematics, an open problem or an open question is a known problem which can be accurately stated, and which is assumed to have an objective and verifiable solution, but which has not yet been solved (i.e., no solution for it is kno ...
in mathematics for the past century. The full details of Perelman's work were filled in and explained by various authors over the following several years. In August 2006, Perelman was offered the
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
for "his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow", but he declined the award, stating: "I'm not interested in money or fame; I don't want to be on display like an animal in a zoo." On 22 December 2006, the scientific journal ''
Science Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
'' recognized Perelman's proof of the Poincaré conjecture as the scientific "
Breakthrough of the Year The Breakthrough of the Year is an annual award for the most significant development in scientific research made by the American Association for the Advancement of Science, AAAS journal ''Science (journal), Science,'' an academic journal covering a ...
", the first such recognition in the area of mathematics. On 18 March 2010, it was announced that he had met the criteria to receive the first Clay Millennium Prize for resolution of the Poincaré conjecture. On 1 July 2010, he rejected the prize of one million dollars, saying that he considered the decision of the board of the Clay Institute to be unfair, in that his contribution to solving the Poincaré conjecture was no greater than that of Richard S. Hamilton, the mathematician who pioneered the Ricci flow partly with the aim of attacking the conjecture. He had previously rejected the prestigious prize of the
European Mathematical Society The European Mathematical Society (EMS) is a European organization dedicated to the development of mathematics in Europe. Its members are different mathematical societies in Europe, academic institutions and individual mathematicians. The curren ...
in 1996.


Early life and education

Grigori Yakovlevich Perelman was born in
Leningrad Saint Petersburg, formerly known as Petrograd and later Leningrad, is the List of cities and towns in Russia by population, second-largest city in Russia after Moscow. It is situated on the Neva, River Neva, at the head of the Gulf of Finland ...
, Soviet Union (now Saint Petersburg, Russia) on June 13, 1966, to
Jewish Jews (, , ), or the Jewish people, are an ethnoreligious group and nation, originating from the Israelites of History of ancient Israel and Judah, ancient Israel and Judah. They also traditionally adhere to Judaism. Jewish ethnicity, rel ...
parents, Yakov (who now lives in Israel) and Lyubov (who still lives in Saint Petersburg with Perelman). Perelman's mother Lyubov gave up graduate work in mathematics to raise him. Perelman's mathematical talent became apparent at the age of 10, and his mother enrolled him in Sergei Rukshin's after-school mathematics training program. His mathematical education continued at the Leningrad Secondary School 239, a specialized school with advanced mathematics and physics programs. Perelman excelled in all subjects except
physical education Physical education is an academic subject taught in schools worldwide, encompassing Primary education, primary, Secondary education, secondary, and sometimes tertiary education. It is often referred to as Phys. Ed. or PE, and in the United Stat ...
. In 1982, not long after his sixteenth birthday, he won a gold medal as a member of the Soviet team at the
International Mathematical Olympiad The International Mathematical Olympiad (IMO) is a mathematical olympiad for pre-university students, and is the oldest of the International Science Olympiads. It is widely regarded as the most prestigious mathematical competition in the wor ...
hosted in Budapest, achieving a perfect score. He continued as a student of the School of Mathematics and Mechanics (the so-called "матмех" i.e. "math-mech") at
Leningrad State University Saint Petersburg State University (SPBGU; ) is a public research university in Saint Petersburg, Russia, and one of the oldest and most prestigious universities in Russia. Founded in 1724 by a decree of Peter the Great, the university from the be ...
, without admission examinations, and enrolled at the university. After completing his PhD in 1990, Perelman began work at the Leningrad Department of Steklov Institute of Mathematics of the
USSR Academy of Sciences The Academy of Sciences of the Soviet Union was the highest scientific institution of the Soviet Union from 1925 to 1991. It united the country's leading scientists and was subordinated directly to the Council of Ministers of the Soviet Union (u ...
, where his advisors were Aleksandr Aleksandrov and Yuri Burago. In the late 1980s and early 1990s, with a strong recommendation from the geometer Mikhail Gromov, Perelman obtained research positions at several universities in the United States. In 1991, Perelman won the Young Mathematician Prize of the
Saint Petersburg Mathematical Society The Saint Petersburg Mathematical Society () is a mathematical society run by Saint Petersburg mathematicians. Historical notes The St. Petersburg Mathematical Society was founded in 1890 and was the third founded mathematical society in Russia ...
for his work on Aleksandrov's spaces of curvature bounded from below. In 1992, he was invited to spend a semester each at the
Courant Institute The Courant Institute of Mathematical Sciences (commonly known as Courant or CIMS) is the mathematics research school of New York University (NYU). Founded in 1935, it is named after Richard Courant, one of the founders of the Courant Institute ...
in
New York University New York University (NYU) is a private university, private research university in New York City, New York, United States. Chartered in 1831 by the New York State Legislature, NYU was founded in 1832 by Albert Gallatin as a Nondenominational ...
, where he began work on
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s with lower bounds on
Ricci curvature In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure ...
. From there, he accepted a two-year
Miller Research Fellows The Miller Institute for Basic Research in Science was established on the University of California, Berkeley, campus in 1955 after Adolph C. Miller and his wife, Mary Sprague Miller, made a donation to the university. It was their wish that the do ...
hip at the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California), is a Public university, public Land-grant university, land-grant research university in Berkeley, California, United States. Founded in 1868 and named after t ...
, in 1993. After proving the soul conjecture in 1994, he was offered jobs at several top universities in the US, including
Princeton Princeton University is a private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the Unit ...
and
Stanford Leland Stanford Junior University, commonly referred to as Stanford University, is a private research university in Stanford, California, United States. It was founded in 1885 by railroad magnate Leland Stanford (the eighth governor of and th ...
, but he rejected them all and returned to the Steklov Institute in Saint Petersburg in the summer of 1995 for a research-only position.


Early research


Convex geometry

In his undergraduate studies, Perelman dealt with issues in the field of
convex geometry In mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of num ...
. His first published article studied the combinatorial structures arising from intersections of
convex polyhedra In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. The term "polyhedron" may refer either to a solid figure or to its boundary surfa ...
. With I. V. Polikanova, he established a measure-theoretic formulation of
Helly's theorem Helly's theorem is a basic result in discrete geometry on the intersection of convex sets. It was discovered by Eduard Helly in 1913,. but not published by him until 1923, by which time alternative proofs by and had already appeared. Helly's ...
. In 1987, the year he began graduate studies, he published an article controlling the size of circumscribed cylinders by that of
inscribed sphere image:Circumcentre.svg, An inscribed triangle of a circle In geometry, an inscribed plane (geometry), planar shape or solid (geometry), solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figu ...
s.


Negatively curved hypersurfaces

Surfaces of negative curvature were the subject of Perelman's graduate studies. His first result was on the possibility of prescribing the structure of negatively-curved polyhedral surfaces in three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. He proved that any such
metric Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
on the plane which is complete can be continuously immersed as a polyhedral surface. Later, he constructed an example of a smooth
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
of four-dimensional Euclidean space which is complete and has
Gaussian curvature In differential geometry, the Gaussian curvature or Gauss curvature of a smooth Surface (topology), surface in three-dimensional space at a point is the product of the principal curvatures, and , at the given point: K = \kappa_1 \kappa_2. For ...
negative and bounded away from zero. Previous examples of such surfaces were known, but Perelman's was the first to exhibit the saddle property on nonexistence of locally strictly supporting hyperplanes. As such, his construction provided further obstruction to the extension of a well-known theorem of Nikolai Efimov to higher dimensions.


Alexandrov spaces

Perelman's first works to have a major impact on the mathematical literature were in the field of
Alexandrov space In geometry, Alexandrov spaces with curvature ≥ ''k'' form a generalization of Riemannian manifolds with sectional curvature ≥ ''k'', where ''k'' is some real number. By definition, these spaces are locally compact complete length spaces wh ...
s, the concept of which dates back to the 1950s. In a very well-known paper coauthored with Yuri Burago and Mikhael Gromov, Perelman established the modern foundations of this field, with the notion of
Gromov–Hausdorff convergence In mathematics, Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff distance. Gromov–Hausdorff distance The Gromov–Hausdorff dist ...
as an organizing principle. In a followup unpublished paper, Perelman proved his "stability theorem," asserting that in the collection of all Alexandrov spaces with a fixed curvature bound, all elements of any sufficiently small metric ball around a compact space are mutually
homeomorphic In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function betw ...
. Vitali Kapovitch, who described Perelman's article as being "very hard to read," later wrote a detailed version of Perelman's proof, making use of some further simplifications. Perelman developed a version of
Morse theory In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differenti ...
on Alexandrov spaces. Despite the lack of smoothness in Alexandrov spaces, Perelman and Anton Petrunin were able to consider the
gradient flow In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and direc ...
of certain functions, in unpublished work. They also introduced the notion of an "extremal subset" of Alexandrov spaces, and showed that the interiors of certain extremal subsets define a stratification of the space by
topological manifold In topology, a topological manifold is a topological space that locally resembles real ''n''- dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds ...
s. In further unpublished work, Perelman studied DC functions (difference of concave functions) on Alexandrov spaces and established that the set of regular points has the structure of a manifold modeled on DC functions. For his work on Alexandrov spaces, Perelman was recognized with an invited lecture at the 1994
International Congress of Mathematicians The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before ...
.


Comparison geometry

In 1972,
Jeff Cheeger Jeff Cheeger (born December 1, 1943) is an American mathematician and Silver Professor at the Courant Institute of Mathematical Sciences of New York University. His main interest is differential geometry and its connections with topology and an ...
and
Detlef Gromoll Detlef Gromoll (13 May 1938 – 31 May 2008) was a mathematician who worked in differential geometry. Biography Gromoll was born in Berlin in 1938, and was a classically trained violinist. After living and attending school in Rosdorf and grad ...
established their important
soul theorem In mathematics, the soul theorem is a theorem of Riemannian geometry that largely reduces the study of complete manifolds of non-negative sectional curvature to that of the compact case. Jeff Cheeger and Detlef Gromoll proved the theorem in 1972 ...
. It asserts that every complete
Riemannian metric In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
of nonnegative
sectional curvature In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature ''K''(σ''p'') depends on a two-dimensional linear subspace σ''p'' of the tangent space at a po ...
has a compact nonnegatively curved submanifold, called a ''soul'', whose normal bundle is
diffeomorphic In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Defini ...
to the original space. From the perspective of
homotopy theory In mathematics, homotopy theory is a systematic study of situations in which Map (mathematics), maps can come with homotopy, homotopies between them. It originated as a topic in algebraic topology, but nowadays is learned as an independent discipli ...
, this says in particular that every complete Riemannian metric of nonnegative sectional curvature may be taken to be closed. Cheeger and Gromoll conjectured that if the curvature is strictly positive somewhere, then the soul can be taken to be a single point, and hence that the original space must be diffeomorphic to
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. In 1994, Perelman gave a short proof of Cheeger and Gromoll's conjecture by establishing that, under the condition of nonnegative sectional curvature, Sharafutdinov's retraction is a submersion. Perelman's theorem is significant in establishing a topological obstruction to deforming a nonnegatively curved metric to one which is positively curved, even at a single point. Some of Perelman's work dealt with the construction of various interesting
Riemannian manifold In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
s with positive
Ricci curvature In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure ...
. He found Riemannian metrics on the
connected sum In mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classifi ...
of arbitrarily many
complex projective plane In mathematics, the complex projective plane, usually denoted or is the two-dimensional complex projective space. It is a complex manifold of complex dimension 2, described by three complex coordinates :(Z_1,Z_2,Z_3) \in \C^3, \qquad (Z_1,Z_2, ...
s with positive Ricci curvature, bounded diameter, and volume bounded away from zero. Also, he found an explicit complete metric on four-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
with positive Ricci curvature and Euclidean volume growth, and such that the
asymptotic cone In mathematics, an ultralimit is a geometric construction that assigns a limit metric space to a sequence of metric spaces X_n. The concept captures the limiting behavior of finite configurations in the X_n spaces employing an ultrafilter to bypass ...
is non-uniquely defined.


Geometrization and Poincaré conjectures


The problems

The Poincaré
conjecture In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), ha ...
, proposed by mathematician
Henri Poincaré Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathemati ...
in 1904, was throughout the 20th century regarded as a key problem in
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
. On the
3-sphere In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere, ''n''-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. The interior o ...
, defined as the set of points at unit length from the origin in four-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, any loop can be contracted into a point. Poincaré suggested that a converse might be true: if a closed three-dimensional
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
has the property that any loop can be contracted into a point, then it must be
topologically equivalent In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated fun ...
to a 3-sphere.
Stephen Smale Stephen Smale (born July 15, 1930) is an American mathematician, known for his research in topology, dynamical systems and mathematical economics. He was awarded the Fields Medal in 1966 and spent more than three decades on the mathematics faculty ...
proved a high-dimensional analogue of Poincaré's conjecture in 1961, and
Michael Freedman Michael Hartley Freedman (born April 21, 1951) is an American mathematician at Microsoft Station Q, a research group at the University of California, Santa Barbara. In 1986, he was awarded a Fields Medal for his work on the 4-dimensional gen ...
proved the four-dimensional version in 1982. Despite their work, the case of three-dimensional spaces remained completely unresolved. Moreover, Smale and Freedman's methods have had no impact on the three-dimensional case, as their topological manipulations, moving "problematic regions" out of the way without interfering with other regions, seem to require high dimensions in order to work. In 1982,
William Thurston William Paul Thurston (October 30, 1946August 21, 2012) was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds. Thurst ...
developed a novel viewpoint, making the Poincaré conjecture into a small special case of a hypothetical systematic structure theory of
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
in three dimensions. His proposal, known as the Thurston geometrization conjecture, posited that given any closed three-dimensional
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
whatsoever, there is some collection of two-dimensional spheres and tori inside of the manifold which disconnect the space into separate pieces, each of which can be endowed with a uniform geometric structure. Thurston was able to prove his conjecture under some provisional assumptions. In John Morgan's view, it was only with Thurston's systematic viewpoint that most topologists came to believe that the Poincaré conjecture would be true. At the same time that Thurston published his conjecture, Richard Hamilton introduced his theory of the
Ricci flow In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion o ...
. Hamilton's Ricci flow is a prescription, defined by a
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives. The function is often thought of as an "unknown" that solves the equation, similar to ho ...
formally analogous to the
heat equation In mathematics and physics (more specifically thermodynamics), the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quanti ...
, for how to deform a
Riemannian metric In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
on a manifold. The heat equation, such as when applied in the sciences to physical phenomena such as
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
, models how concentrations of extreme temperatures will spread out until a uniform temperature is achieved throughout an object. In three seminal articles published in the 1980s, Hamilton proved that his equation achieved analogous phenomena, spreading extreme curvatures and uniformizing a Riemannian metric, in certain geometric settings. As a byproduct, he was able to prove some new and striking theorems in the field of
Riemannian geometry Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
. Despite formal similarities, Hamilton's equations are significantly more complex and nonlinear than the heat equation, and it is impossible that such uniformization is achieved without contextual assumptions. In completely general settings, it is inevitable that "singularities" occur, meaning that curvature accumulates to infinite levels after a finite amount of "time" has elapsed. Following
Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar ...
's suggestion that a detailed understanding of these singularities could be topologically meaningful, and in particular that their locations might identify the spheres and tori in Thurston's conjecture, Hamilton began a systematic analysis. Throughout the 1990s, he found a number of new technical results and methods, culminating in a 1997 publication constructing a "Ricci flow with surgery" for four-dimensional spaces. As an application of his construction, Hamilton was able to settle a four-dimensional curvature-based analogue of the Poincaré conjecture. Yau has identified this article as one of the most important in the field of
geometric analysis Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of ...
, saying that with its publication it became clear that Ricci flow could be powerful enough to settle the Thurston conjecture. The key of Hamilton's analysis was a quantitative understanding of how singularities occur in his four-dimensional setting; the most outstanding difficulty was the quantitative understanding of how singularities occur in three-dimensional settings. Although Hamilton was unable to resolve this issue, in 1999 he published work on
Ricci flow In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion o ...
in three dimensions, showing that if a three-dimensional version of his surgery techniques could be developed, and if a certain conjecture on the long-time behavior of Ricci flow could be established, then Thurston's conjecture would be resolved. This became known as the Hamilton program.


Perelman's work

In November 2002 and March 2003, Perelman posted two
preprint In academic publishing, a preprint is a version of a scholarly or scientific paper that precedes formal peer review and publication in a peer-reviewed scholarly or scientific journal. The preprint may be available, often as a non-typeset versi ...
s to
arXiv arXiv (pronounced as "archive"—the X represents the Chi (letter), Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not Scholarly pee ...
, in which he claimed to have outlined a
proof Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a co ...
of Thurston's conjecture. In a third paper posted in July 2003, Perelman outlined an additional argument, sufficient for proving the Poincaré conjecture (but not the Thurston conjecture), the point being to avoid the most technical work in his second preprint. Perelman's first preprint contained two primary results, both to do with Ricci flow. The first, valid in any dimension, was based on a novel adaptation of Peter Li and
Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar ...
's differential Harnack inequalities to the setting of Ricci flow. By carrying out the proof of the
Bishop–Gromov inequality In mathematics, the Bishop–Gromov inequality is a comparison theorem in Riemannian geometry, named after Richard L. Bishop and Mikhail Gromov. It is closely related to Myers' theorem, and is the key point in the proof of Gromov's compactness ...
for the resulting Li−Yau length functional, Perelman established his celebrated "noncollapsing theorem" for Ricci flow, asserting that local control of the size of the curvature implies control of volumes. The significance of the noncollapsing theorem is that volume control is one of the preconditions of Hamilton's ''compactness theorem''. As a consequence, Hamilton's compactness and the corresponding existence of subsequential limits could be applied somewhat freely. The "canonical neighborhoods theorem" is the second main result of Perelman's first preprint. In this theorem, Perelman achieved the quantitative understanding of singularities of three-dimensional
Ricci flow In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion o ...
which had eluded Hamilton. Roughly speaking, Perelman showed that on a microscopic level, every singularity looks either like a
cylinder A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infinite ...
collapsing to its axis, or a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
collapsing to its center. Perelman's proof of his canonical neighborhoods theorem is a highly technical achievement, based upon extensive arguments by contradiction in which Hamilton's compactness theorem (as facilitated by Perelman's noncollapsing theorem) is applied to construct self-contradictory manifolds. Other results in Perelman's first preprint include the introduction of certain monotonic quantities and a "pseudolocality theorem" which relates curvature control and
isoperimetry In mathematics, the isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. '' Isoperimetric'' ...
. However, despite being major results in the theory of Ricci flow, these results were not used in the rest of his work. The first half of Perelman's second preprint, in addition to fixing some incorrect statements and arguments from the first paper, used his canonical neighborhoods theorem to construct a
Ricci flow In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion o ...
with surgery in three dimensions, systematically excising singular regions as they develop. As an immediate corollary of his construction, Perelman resolved a major conjecture on the topological classification in three dimensions of
closed manifold In mathematics, a closed manifold is a manifold Manifold with boundary, without boundary that is Compact space, compact. In comparison, an open manifold is a manifold without boundary that has only ''non-compact'' components. Examples The onl ...
s which admit metrics of positive
scalar curvature In the mathematical field of Riemannian geometry, the scalar curvature (or the Ricci scalar) is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry ...
. His third preprint (or alternatively Colding and Minicozzi's work) showed that on any space satisfying the assumptions of the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured b ...
, the Ricci flow with surgery exists only for
finite Finite may refer to: * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Gr ...
time, so that the infinite-time analysis of Ricci flow is irrelevant. The construction of Ricci flow with surgery has the Poincaré conjecture as a corollary. In order to settle the Thurston conjecture, the second half of Perelman's second preprint is devoted to an analysis of Ricci flows with surgery, which may exist for infinite time. Perelman was unable to resolve Hamilton's 1999 conjecture on long-time behavior, which would make Thurston's conjecture another corollary of the existence of Ricci flow with surgery. Nonetheless, Perelman was able to adapt Hamilton's arguments to the precise conditions of his new Ricci flow with surgery. The end of Hamilton's argument made use of
Jeff Cheeger Jeff Cheeger (born December 1, 1943) is an American mathematician and Silver Professor at the Courant Institute of Mathematical Sciences of New York University. His main interest is differential geometry and its connections with topology and an ...
and Mikhael Gromov's theorem characterizing collapsing manifolds. In Perelman's adaptation, he required use of a new theorem characterizing manifolds in which collapsing is only assumed on a local level. In his preprint, he said the proof of his theorem would be established in another paper, but he did not then release any further details. Proofs were later published by Takashi Shioya and Takao Yamaguchi, John Morgan and
Gang Tian Tian Gang (; born November 24, 1958) is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler g ...
, Jianguo Cao and Jian Ge, and
Bruce Kleiner Bruce Alan Kleiner is an American mathematician, working in differential geometry and topology and geometric group theory. He received his Ph.D. in 1990 from the University of California, Berkeley. His advisor was Wu-Yi Hsiang. Kleiner is a p ...
and John Lott.


Verification

Perelman's preprints quickly gained the attention of the mathematical community, although they were widely seen as hard to understand since they had been written somewhat tersely. Against the usual style in academic mathematical publications, many technical details had been omitted. It was soon apparent that Perelman had made major contributions to the foundations of
Ricci flow In differential geometry and geometric analysis, the Ricci flow ( , ), sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion o ...
, although it was not immediately clear to the mathematical community that these contributions were sufficient to prove the
geometrization conjecture In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theor ...
or the
Poincaré conjecture In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured b ...
. In April 2003, Perelman visited the
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a Private university, private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of moder ...
,
Princeton University Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
,
Stony Brook University Stony Brook University (SBU), officially the State University of New York at Stony Brook, is a public university, public research university in Stony Brook, New York, United States, on Long Island. Along with the University at Buffalo, it is on ...
,
Columbia University Columbia University in the City of New York, commonly referred to as Columbia University, is a Private university, private Ivy League research university in New York City. Established in 1754 as King's College on the grounds of Trinity Churc ...
, and
New York University New York University (NYU) is a private university, private research university in New York City, New York, United States. Chartered in 1831 by the New York State Legislature, NYU was founded in 1832 by Albert Gallatin as a Nondenominational ...
to give short series of lectures on his work, and to clarify some details for experts in the relevant fields. In the years afterwards, three detailed expositions appeared, discussed below. Since then, various parts of Perelman's work have also appeared in a number of textbooks and expository articles. * In June 2003,
Bruce Kleiner Bruce Alan Kleiner is an American mathematician, working in differential geometry and topology and geometric group theory. He received his Ph.D. in 1990 from the University of California, Berkeley. His advisor was Wu-Yi Hsiang. Kleiner is a p ...
and John Lott, both then of the
University of Michigan The University of Michigan (U-M, U of M, or Michigan) is a public university, public research university in Ann Arbor, Michigan, United States. Founded in 1817, it is the oldest institution of higher education in the state. The University of Mi ...
, posted notes on Lott's website which, section by section, filled in details of Perelman's first preprint. In September 2004, their notes were updated to include Perelman's second preprint. Following further revisions and corrections, they posted a version to arXiv on 25 May 2006, a modified version of which was published in the academic journal
Geometry & Topology ''Geometry & Topology'' is a peer-refereed, international mathematics research journal devoted to geometry and topology, and their applications. It is currently based at the University of Warwick, United Kingdom, and published by Mathematical S ...
in 2008. At the 2006
International Congress of Mathematicians The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before ...
, Lott said "It has taken us some time to examine Perelman's work. This is partly due to the originality of Perelman's work and partly to the technical sophistication of his arguments. All indications are that his arguments are correct." In the introduction to their article, Kleiner and Lott explained: :Since its 2008 publication, Kleiner and Lott's article has subsequently been revised twice for corrections, such as for an incorrect statement of Hamilton's important "compactness theorem" for Ricci flow. The latest revision to their article was in 2013. * In June 2006, the
Asian Journal of Mathematics ''The Asian Journal of Mathematics'' is a peer-reviewed scientific journal covering all areas of pure and theoretical applied mathematics Applied mathematics is the application of mathematics, mathematical methods by different fields such as p ...
published an article by
Huai-Dong Cao Huai-Dong Cao (born 8 November 1959, in Jiangsu) is a Chinese-born American mathematician. He is the A. Everett Pitcher Professor of Mathematics at Lehigh University. He is known for his research contributions to the Ricci flow, a topic in the fie ...
of
Lehigh University Lehigh University (LU), in Bethlehem, Pennsylvania, United States, is a private university, private research university. The university was established in 1865 by businessman Asa Packer. Lehigh University's undergraduate programs have been mixed ...
and Zhu Xiping of
Sun Yat-sen University Sun Yat-sen University (; SYSU) is a public university in Guangzhou, Guangdong, China. It is affiliated with the Ministry of Education, and co-funded by the Ministry of Education, SASTIND, and Guangdong Provincial Government. The university is p ...
, giving a complete description of Perelman's proof of the Poincaré and the geometrization conjectures. Unlike Kleiner and Lott's article, which was structured as a collection of annotations to Perelman's papers, Cao and Zhu's article was aimed directly towards explaining the proofs of the Poincaré conjecture and geometrization conjecture. In their introduction, they explain: :Based also upon the title "A Complete Proof of the Poincaré and Geometrization Conjectures – Application of the Hamilton-Perelman Theory of Ricci Flow" and the phrase "This proof should be considered as the crowning achievement of the Hamilton-Perelman theory of Ricci flow" from the abstract, some people interpreted Cao and Zhu to be taking credit from Perelman for themselves. When asked about the issue, Perelman said that he could not see any new contribution by Cao and Zhu and that they "did not quite understand the argument and reworked it." Additionally, one of the pages of Cao and Zhu's article was essentially identical to one from Kleiner and Lott's 2003 posting. In a published erratum, Cao and Zhu attributed this to an oversight, saying that in 2003 they had taken down notes from the initial version of Kleiner and Lott's notes, and in their 2006 writeup had not realized the proper source of the notes. They posted a revised version to
ArXiv arXiv (pronounced as "archive"—the X represents the Chi (letter), Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not Scholarly pee ...
with revisions in their phrasing and in the relevant page of the proof. * In July 2006, John Morgan of
Columbia University Columbia University in the City of New York, commonly referred to as Columbia University, is a Private university, private Ivy League research university in New York City. Established in 1754 as King's College on the grounds of Trinity Churc ...
and
Gang Tian Tian Gang (; born November 24, 1958) is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler g ...
of the
Massachusetts Institute of Technology The Massachusetts Institute of Technology (MIT) is a Private university, private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of moder ...
posted a paper on arXiv in which they provided a detailed presentation of Perelman's proof of the Poincaré conjecture. Unlike Kleiner-Lott and Cao-Zhu's expositions, Morgan and Tian's also deals with Perelman's third paper. On 24 August 2006, Morgan delivered a lecture at the ICM in
Madrid Madrid ( ; ) is the capital and List of largest cities in Spain, most populous municipality of Spain. It has almost 3.5 million inhabitants and a Madrid metropolitan area, metropolitan area population of approximately 7 million. It i ...
on the Poincaré conjecture, in which he declared that Perelman's work had been "thoroughly checked." In 2015, Abbas Bahri pointed out a counterexample to one of Morgan and Tian's theorems, which was later fixed by Morgan and Tian and sourced to an incorrectly computed evolution equation. The error, introduced by Morgan and Tian, dealt with details not directly discussed in Perelman's original work. In 2008, Morgan and Tian posted a paper which covered the details of the proof of the geometrization conjecture. Morgan and Tian's two articles have been published in book form by the Clay Mathematics Institute.


Fields Medal and Millennium Prize

In May 2006, a committee of nine mathematicians voted to award Perelman a
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
for his work on the Ricci flow. However, Perelman declined to accept the prize. Sir John Ball, president of the
International Mathematical Union The International Mathematical Union (IMU) is an international organization devoted to international cooperation in the field of mathematics across the world. It is a member of the International Science Council (ISC) and supports the International ...
, approached Perelman in
Saint Petersburg Saint Petersburg, formerly known as Petrograd and later Leningrad, is the List of cities and towns in Russia by population, second-largest city in Russia after Moscow. It is situated on the Neva, River Neva, at the head of the Gulf of Finland ...
in June 2006 to persuade him to accept the prize. After 10 hours of attempted persuasion over two days, Ball gave up. Two weeks later, Perelman summed up the conversation as follows: He was quoted as saying: Nevertheless, on 22 August 2006, at the
International Congress of Mathematicians The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before ...
in
Madrid Madrid ( ; ) is the capital and List of largest cities in Spain, most populous municipality of Spain. It has almost 3.5 million inhabitants and a Madrid metropolitan area, metropolitan area population of approximately 7 million. It i ...
, Perelman was offered the Fields Medal "for his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow". He did not attend the ceremony and the presenter informed the congress that Perelman declined to accept the medal, which made him the only person to have ever declined the prize. He has also rejected a prestigious prize from the
European Mathematical Society The European Mathematical Society (EMS) is a European organization dedicated to the development of mathematics in Europe. Its members are different mathematical societies in Europe, academic institutions and individual mathematicians. The curren ...
. On 18 March 2010, Perelman was awarded a Millennium Prize for solving the problem. On 8 June 2010, he did not attend a ceremony in his honor at the Institut Océanographique de Paris to accept his $1 million prize. According to
Interfax Interfax () is a Russian news agency. The agency is owned by Interfax News Agency joint-stock company and is headquartered in Moscow. History As the first non-governmental channel of political and economic information about the USSR, Interfax ...
, Perelman refused to accept the Millennium Prize in July 2010. He considered the decision of the Clay Institute unfair for not sharing the prize with Richard S. Hamilton, and stated that "the main reason is my disagreement with the organized mathematical community. I don't like their decisions, I consider them unjust." The Clay Institute subsequently used Perelman's prize money to fund the "Poincaré Chair", a temporary position for young promising mathematicians at the Paris
Institut Henri Poincaré The Henri Poincaré Institute (or IHP for ''Institut Henri Poincaré'') is a mathematics research institute part of Sorbonne University, in association with the Centre national de la recherche scientifique (CNRS). It is located in the 5th arrondi ...
.


Possible withdrawal from mathematics

Perelman quit his job at the
Steklov Institute Steklov Institute of Mathematics or Steklov Mathematical Institute () is a premier research institute based in Moscow, specialized in mathematics, and a part of the Russian Academy of Sciences. The institute is named after Vladimir Andreevich Ste ...
in December 2005. His friends are said to have stated that he currently finds mathematics a painful topic to discuss; by 2010, some even said that he had entirely abandoned mathematics. Perelman is quoted in a 2006 article in ''
The New Yorker ''The New Yorker'' is an American magazine featuring journalism, commentary, criticism, essays, fiction, satire, cartoons, and poetry. It was founded on February 21, 1925, by Harold Ross and his wife Jane Grant, a reporter for ''The New York T ...
'' saying that he was disappointed with the ethical standards of the field of mathematics. The article implies that Perelman refers particularly to alleged efforts of Fields medalist
Shing-Tung Yau Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician. He is the director of the Yau Mathematical Sciences Center at Tsinghua University and professor emeritus at Harvard University. Until 2022, Yau was the William Caspar ...
to downplay Perelman's role in the proof and play up the work of
Cao Cao or CAO may refer to: Mythology *Cao (bull), a legendary bull in Meitei mythology Companies or organizations * Air China Cargo, ICAO airline designator CAO * CA Oradea, Romanian football club * CA Osasuna, Spanish football club * Canadian ...
and Zhu. Perelman added: This, combined with the possibility of being awarded a
Fields Medal The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
, led him to state that he had quit professional mathematics by 2006. He said: It was unclear whether along with his resignation from Steklov and subsequent seclusion Perelman stopped his mathematics research.
Yakov Eliashberg Yakov Matveevich Eliashberg (also Yasha Eliashberg; ; born 11 December 1946) is an American mathematician who was born in Leningrad, USSR. Education and career Eliashberg received his PhD, entitled ''Surgery of Singularities of Smooth Mappin ...
, another
Russian Russian(s) may refer to: *Russians (), an ethnic group of the East Slavic peoples, primarily living in Russia and neighboring countries *A citizen of Russia *Russian language, the most widely spoken of the Slavic languages *''The Russians'', a b ...
mathematician, said that in 2007 Perelman confided to him that he was working on other things, but that it was too premature to discuss them. Perelman has shown interest in the
Navier–Stokes equations The Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician Georg ...
and the problem of their solutions' existence and smoothness, according to ''
Le Point ''Le Point'' () is a French weekly political and conservative news magazine published in Paris. It is one of the three major French news magazines. ''Le Point'' was founded in 1972 by former journalists of ''L'Express'' and quickly rose to be ...
''. In 2014, Russian media reported that Perelman was working in the field of
nanotechnology Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing propertie ...
in
Sweden Sweden, formally the Kingdom of Sweden, is a Nordic countries, Nordic country located on the Scandinavian Peninsula in Northern Europe. It borders Norway to the west and north, and Finland to the east. At , Sweden is the largest Nordic count ...
. Shortly thereafter, however, he was spotted again in his native hometown of
Saint Petersburg Saint Petersburg, formerly known as Petrograd and later Leningrad, is the List of cities and towns in Russia by population, second-largest city in Russia after Moscow. It is situated on the Neva, River Neva, at the head of the Gulf of Finland ...
. Russian media speculated that he periodically visits his sister in Sweden, while living in Saint Petersburg and taking care of his elderly mother.


Perelman and the media

Perelman has avoided
journalists A journalist is a person who gathers information in the form of text, audio or pictures, processes it into a newsworthy form and disseminates it to the public. This is called journalism. Roles Journalists can work in broadcast, print, advertis ...
and other members of the media.
Masha Gessen Masha Gessen () is a Russian and American journalist, author, and translator who has written extensively on LGBT rights. Gessen writes primarily in English but also in Russian. In addition to authoring several nonfiction books, Gessen has con ...
, author of a biography about Perelman, ''Perfect Rigour: A Genius and the Mathematical Breakthrough of the Century'', was unable to meet him. A reporter who had called him was told: "You are disturbing me. I am picking mushrooms." A Russian documentary about Perelman in which his work is discussed by several leading mathematicians, including Mikhail Gromov, Ludwig Faddeev,
Anatoly Vershik Anatoly Moiseevich Vershik (; 28 December 1933 – 14 February 2024) was a Soviet and Russian mathematician. He is most famous for his joint work with Sergei V. Kerov on representations of infinite symmetric groups and applications to the lon ...
,
Gang Tian Tian Gang (; born November 24, 1958) is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler g ...
, John Morgan and others was released in 2011 under the title "Иноходец. Урок Перельмана" ("Maverick: Perelman's Lesson"). In April 2011, Aleksandr Zabrovsky, producer of President-Film studio, claimed to have held an interview with Perelman and agreed to shoot a film about him, under the tentative title ''The Formula of the Universe''. Zabrovsky said that in the interview, Perelman explained why he rejected the one million dollar prize. A number of journalists believe that Zabrovsky's interview is most likely a fake, pointing to contradictions in statements supposedly made by Perelman. The writer Brett Forrest briefly interacted with Perelman in 2012.


Publications

Dissertation * Автореф. дис. на соиск. учен. степ. канд. физ.-мат. наук. Research papers Unpublished work


See also

* 50033 Perelman * Ancient solution *
Homology sphere In algebraic topology, a homology sphere is an ''n''-manifold ''X'' having the homology groups of an ''n''-sphere, for some integer n\ge 1. That is, :H_0(X,\Z) = H_n(X,\Z) = \Z and :H_i(X,\Z) = \ for all other ''i''. Therefore ''X'' is a conne ...
*
Hyperbolic manifold In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, res ...
* "
Manifold Destiny "Manifold Destiny" is an article in '' The New Yorker'' written by Sylvia Nasar and David Gruber and published in the 28 August 2006 issue of the magazine.Sylvia Nasar and David Gruber.Manifold Destiny: A legendary problem and the battle over w ...
" *
Spherical space form conjecture In geometric topology, the spherical space form conjecture (now a theorem) states that a finite group acting on the 3-sphere is conjugate to a group of isometries of the 3-sphere. History The conjecture was posed by Heinz Hopf in 1926 after dete ...
* Thurston elliptization conjecture *
Uniformization theorem In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generali ...


Notes


References


Sources

* Anderson, M.T. 2005
Singularities of the Ricci flow
Encyclopedia of Mathematical Physics, Elsevier. *The Associated Press, *
Erratum
Revised version (December 2006)
Hamilton-Perelman's Proof of the Poincaré Conjecture and the Geometrization Conjecture
* * * * * (an account of Perelman's talk on his proof at MIT; pdf file; also see Sugaku Seminar 2003–10 pp 4–7 for an extended version in Japanese) *


External links

* * * {{DEFAULTSORT:Perelman, Grigori Living people 1966 births 20th-century Russian mathematicians 21st-century Russian Jews 21st-century Russian mathematicians Differential geometers Fields Medalists International Mathematical Olympiad participants Jewish Russian scientists Mathematicians from Saint Petersburg Members of the USSR Academy of Sciences New York University staff Russian scientists Saint Petersburg State University alumni Soviet Jews Soviet mathematicians Topologists University of California, Berkeley fellows