γ-hydroxybutyric Aciduria
   HOME

TheInfoList



OR:

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare
autosomal recessive In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
disorder of the degradation pathway of the inhibitory neurotransmitter γ-aminobutyric acid, or GABA. The disorder has been identified in approximately 350 families, with a significant proportion being consanguineous families. The first case was identified in 1981 and published in a Dutch clinical chemistry journal that highlighted a number of neurological conditions such as delayed intellectual, motor, speech, and language as the most common manifestations. Later cases reported in the early 1990s began to show that
hypotonia Hypotonia is a state of low muscle tone (the amount of tension or resistance to stretch in a muscle), often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but a potential manifestation of many different diseases a ...
, hyporeflexia,
seizures An epileptic seizure, informally known as a seizure, is a period of symptoms due to abnormally excessive or neural oscillation, synchronous neuronal activity in the brain. Outward effects vary from uncontrolled shaking movements involving much o ...
, and a nonprogressive
ataxia Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements. Ataxia is a clinical manifestation indicating dysfunction of ...
were frequent clinical features as well. SSADH deficiency is caused by an enzyme deficiency in GABA degradation. Under normal conditions, SSADH works with the enzyme
GABA transaminase In enzymology, 4-aminobutyrate transaminase (), also called GABA transaminase or 4-aminobutyrate aminotransferase, or GABA-T, is an enzyme that catalyzes the chemical reaction: :4-aminobutanoate + 2-oxoglutarate \rightleftharpoons succinate sem ...
to convert GABA to succinic acid. Succinic acid can then be utilized for energy production via the Krebs cycle. However, because of the deficiency, the final intermediate of the GABA degradation pathway, succinic semialdehyde, accumulates and cannot be oxidized to succinic acid and is therefore reduced to
gamma-hydroxybutyric acid ''gamma''-Hydroxybutyric acid (or γ-hydroxybutyric acid (GHB), also known as 4-hydroxybutanoic acid) is a naturally occurring neurotransmitter and a depressant drug. It is a precursor to GABA, glutamate, and glycine in certain brain areas. ...
(GHB) by gamma-hydroxybutyric dehydrogenase. This causes elevations in GHB and is believed to be the trademark of this disorder and cause for the neurological manifestations seen.


Signs and symptoms

The symptoms of SSADH deficiency fall into three primary categories: neurological, psychiatric, and
ocular Eyes are organs of the visual system. They provide living organisms with vision, the ability to receive and process visual detail, as well as enabling several photo response functions that are independent of vision. Eyes detect light and con ...
. The most constant features seen are developmental delay,
hypotonia Hypotonia is a state of low muscle tone (the amount of tension or resistance to stretch in a muscle), often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but a potential manifestation of many different diseases a ...
and intellectual disability. Nearly half of patients seen manifest
ataxia Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements. Ataxia is a clinical manifestation indicating dysfunction of ...
, behavior problems,
seizures An epileptic seizure, informally known as a seizure, is a period of symptoms due to abnormally excessive or neural oscillation, synchronous neuronal activity in the brain. Outward effects vary from uncontrolled shaking movements involving much o ...
, and hyporeflexia. The age of onset ranges from newborn period to 25 years. Problems unique to neonates can include prematurity,
lethargy Lethargy is a state of tiredness, sleepiness, weariness, fatigue, sluggishness or lack of energy. It can be accompanied by depression, decreased motivation, or apathy. Lethargy can be a normal response to inadequate sleep, overexertion, overwo ...
, decreased sucking, respiratory difficulty and
hypoglycemia Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose belo ...
. Gastrointestinal symptoms have been seen primarily in this population and are usually related to increased feeding.
Ocular Eyes are organs of the visual system. They provide living organisms with vision, the ability to receive and process visual detail, as well as enabling several photo response functions that are independent of vision. Eyes detect light and con ...
problems related to the disorder include strabismus, nystagmus, retinitis, disc pallor, and oculomotor apraxia. Over half of the patients with SSADH deficiency have seizures. These include absence, tonic clonic, and convulsive
status epilepticus Status epilepticus (SE), or status seizure, is a single seizure lasting more than 5 minutes or 2 or more seizures within a 5-minute period without the person returning to normal between them. Previous definitions used a 30-minute time limit. The s ...
. It is unclear whether decreased levels of GABA or elevated levels of GHB are responsible for these seizures but alterations in these neurotransmitters and their receptor binding or neurotransmitter transport is hypothesized to play a role in the pathogenesis of the seizures in this population. Symptoms associated with SSADHD may be mild, moderate or severe and often vary greatly from case to case. The symptoms of SSADH are caused by the accumulation of GHB in the brain and include the following manifestations (Defined as: common, > 70% of patients; frequent 30-70% of patients;unusual, < 30% of patients): Common manifestations include: * Delayed gross motor development * Delayed mental development * Delayed fine motor skill development * Delayed speech and language development *
Hypotonia Hypotonia is a state of low muscle tone (the amount of tension or resistance to stretch in a muscle), often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but a potential manifestation of many different diseases a ...
Frequent manifestations include: *
Seizures An epileptic seizure, informally known as a seizure, is a period of symptoms due to abnormally excessive or neural oscillation, synchronous neuronal activity in the brain. Outward effects vary from uncontrolled shaking movements involving much o ...
* Hyporeflexia *
Ataxia Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements. Ataxia is a clinical manifestation indicating dysfunction of ...
* Behavioral problems * Hyperkinesis Unusual manifestations include: * Neonatal problems *
EEG Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex ...
abnormalities *
Psychoses Psychosis is a condition of the mind that results in difficulties determining what is real and what is not real. Symptoms may include delusions and hallucinations, among other features. Additional symptoms are incoherent speech and behavior t ...
* MRI or X-ray computed tomography abnormalities * Oculomotor apraxia *
Microcephaly Microcephaly (from New Latin ''microcephalia'', from Ancient Greek μικρός ''mikrós'' "small" and κεφαλή ''kephalé'' "head") is a medical condition involving a smaller-than-normal head. Microcephaly may be present at birth or it ...
* Macrocephaly * Hyperreflexia *
Somnolence Somnolence (alternatively sleepiness or drowsiness) is a state of strong desire for sleep, or sleeping for unusually long periods (compare hypersomnia). It has distinct meanings and causes. It can refer to the usual state preceding falling asleep ...
*
Choreoathetosis Choreoathetosis is the occurrence of involuntary movements in a combination of chorea (irregular migrating contractions) and athetosis (twisting and writhing). It is caused by many different diseases and agents. It is a symptom of several diseases ...
*
Myopathy In medicine, myopathy is a disease of the muscle in which the muscle fibers do not function properly. This results in muscular weakness. ''Myopathy'' means muscle disease (Greek : myo- ''muscle'' + patheia '' -pathy'' : ''suffering''). This meani ...


Genetics

SSADH deficiency is inherited in an autosomal recessive fashion. Such diseases are caused by an error in a single DNA gene. Because the disease is autosomal, the defective gene is found on an
autosome An autosome is any chromosome that is not a sex chromosome. The members of an autosome pair in a diploid cell have the same morphology, unlike those in allosome, allosomal (sex chromosome) pairs, which may have different structures. The DNA in au ...
(
chromosome 6 Chromosome 6 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 6 spans more than 170 million base pairs (the building material of DNA) and represents between 5.5 and 6% of the total ...
), rather than the
sex-linked Sex linked describes the sex-specific patterns of inheritance and presentation when a gene mutation (allele) is present on a sex chromosome (allosome) rather than a non-sex chromosome ( autosome). In humans, these are termed X-linked recessive, ...
23rd chromosome. Being a
recessive In genetics, dominance is the phenomenon of one variant (allele) of a gene on a chromosome masking or overriding the effect of a different variant of the same gene on the other copy of the chromosome. The first variant is termed dominant and t ...
disorder, the disease can only be inherited from both parents since the disorder can only occur when a person has two copies of the gene. It is believed that the genetic basis for SSADH deficiency resides in the SSADH human ALDH5A1 gene, which maps to chromosome 6p22. More than 47 disease-causing mutations have been identified for the disorder, all of which lead to absence of functional proteins through missense, nonsense, or splicing errors; no
hotspots Hotspot, Hot Spot or Hot spot may refer to: Places * Hot Spot, Kentucky, a community in the United States Arts, entertainment, and media Fictional entities * Hot Spot (comics), a name for the DC Comics character Isaiah Crockett * Hot Spot (Tra ...
have been identified. Consanguinity is frequent; this suggests the rare occurrence of disease-causing alleles in the general population.


Mechanism

GABA is a major inhibitory
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
in the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain and spinal cord. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all par ...
. It modulates the activity of several neurotransmitters including
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic compound, organic chemical of the catecholamine and phenethylamine families. Dopamine const ...
,
serotonin Serotonin () or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Its biological function is complex and multifaceted, modulating mood, cognition, reward, learning, memory, and numerous physiological processes such as vomiting and vas ...
, and
norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic chemical in the catecholamine family that functions in the brain and body as both a hormone and neurotransmitter. The name "noradrenaline" (from Latin '' ad'', ...
. GABA is synthesized in a single step from its precursor
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
by glutamic acid decarboxylase. GABA is metabolized by successive transamination and
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a d ...
to yield
succinic semialdehyde Succinic semialdehyde (SSA) is a GABA metabolite. It is formed from GABA by the action of GABA transaminase and further oxidised to become succinic acid, which enters TCA cycle. See also * Succinic semialdehyde dehydrogenase deficiency Succin ...
and succinic acid respectively via the catalyzing effects of
GABA transaminase In enzymology, 4-aminobutyrate transaminase (), also called GABA transaminase or 4-aminobutyrate aminotransferase, or GABA-T, is an enzyme that catalyzes the chemical reaction: :4-aminobutanoate + 2-oxoglutarate \rightleftharpoons succinate sem ...
. The succinic semialdehyde can be converted into either succinic acid by SSADH or to GHB by the enzyme succinic semialdehyde reductase. The absence of SSADH leads to a 30-fold increase of GHB and a 2-4 fold increase of GABA in the brains of patients with SSADH deficiency as compared to normal brain concentrations of the compounds. Elevations of GHB have been shown to induce spike and wave activity similar to that seen in generalized absence
epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrical ...
in animal models as well, which has motivated researchers to increase their knowledge on the relationship between GHB and the neurological manifestations seen in SSADH deficiency. GABA acts via binding to its receptors which include the
ligand gated ion channels Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
, GABAA and GABAC and the G-protein couple receptors GABAB. The GABAB receptor has been found to be the most important of the three receptors for this disorder as it is vital in both GABA and GHB release. This receptor mediates the release through presynaptic effects through a voltage dependent inhibition of high voltage activation of
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to ...
channels. Many experiments have been able to show that it is the increased levels of both GABA and GHB that seem to alter the function of GABAB receptor, which may further play a role in the tonic-clonic seizures that are often seen in patients with the disorder. In terms of intracellular signaling, GHB inhibits mitogen activated protein (MAP) kinase action via the GABAB receptor mechanism. MAP kinase is imperative for numerous physiological changes including regulation of
cell division Cell division is the process by which a parent cell (biology), cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukar ...
and differentiation, thus, down-regulation of this pathway may occur during the presence of too much GHB as found in SSADH deficiency. In 2003, Ren and Mody et al. proved that repeated exposure of GHB to MAP kinase affected myelin expression. This is a critical finding since myelin is the electrical and insulating phospholipid layer that surrounds the axons of many neurons in the brain. Proper myelination is critical for carrying electrical signals, or data, from one nerve cell to the next. When myelin becomes damaged, it can cause numerous neurological problems, many of which are seen in patients with SSADH deficiency. Thus, Ren and Mody's work in the relationship between increased levels of GHB and myelin expression may further show the significance of this pathway in terms of the neurological deficits seen in SSADH deficiency. Glutamine metabolism may also play a role in the pathophysiology of SSADH deficiency. The major ionotropic glutamine receptors include the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainite receptor. High levels of GHB have been shown to depress both the NMDA and AMPA/kainite receptor mediated functions and may also alter glutamatergic excitatory synaptic transmission as well. Decreased glutamine, coupled with elevated GABA, has also suggested disruption of the glutamate–glutamine cycle, glutamine–glutamate shuttle which ultimately provides for astrocytic glutamine as a precursor for neuronal
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
and GABA. This disruption has the potential to impair glutamate homeostasis and may lead to uncoupling of the normal balance between glutamatergic excitatory activity and GABAergic inhibition, and may be responsible for the convulsive
seizures An epileptic seizure, informally known as a seizure, is a period of symptoms due to abnormally excessive or neural oscillation, synchronous neuronal activity in the brain. Outward effects vary from uncontrolled shaking movements involving much o ...
that are observed in this disorder. Finally, additional mitochondrial processes may also be affected by SSADH deficiency. Succinate semialdehyde is considered a reactive carbonyl and may lead to increased oxidative stress. This stress is believed to contribute to the formation of free radicals in the brain tissue of animal models induced with SSADH deficiency, which further leads to secondary cell damage and death. Additionally, oxidative stress may be responsible for loss of striatal
dopamine Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic compound, organic chemical of the catecholamine and phenethylamine families. Dopamine const ...
which may contribute to pathophysiology of the disease.


Diagnosis


''Neuroimaging''

Cranial computed topography, magnetic resonance imaging, and flurodeoxyglucose positron emission topography are just some of the neuroimaging modalities that have been used to diagnose patients with SSADH deficiency. On the basis of 29 previously published cases that had imaging results available, there were some common abnormalities found. These included increased T2-weighted signal abnormalities involving the globus pallidi bilaterally and symmetrically as well as the presence of subcortical white matter. Similar abnormalities have been identified in the brainstem and cerebellar dentate nucleus. Signal intensity on a T2 image may be a result of edema or an inflammatory response. Because this type of imaging is a water detecting sequence, any form of calcification or mineralization would also appear dark, thus explaining why accumulation of extra blood or fluid would appear bright on a T2 image. Another explanation for signal intensity may be demyelination since the globus pallidi are traversed by a number of myelinated axons, thus confirming Ren and Mody's 2003 work proving that repeated exposure of GHB to MAP kinase affected myelin expression, thus causing the numerous neurological dysfunctions seen in SSADH deficiency patients. Ultimately, because the globus pallidus is intimately linked with the basal ganglia and thalamus, it would be expected that some of the motor dysfunctions seen in SSADH patients such as
ataxia Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements. Ataxia is a clinical manifestation indicating dysfunction of ...
and hyporeflexia would be common.


''Laboratory''

Detection of the disorder is possible with an organic acid analysis of the urine. Patients with SSADH deficiency will excrete high levels of GHB but this can be difficult to measure since GHB has high volatility and may be obscured on gas chromatography or mass spectrometry studies by a high urea peak. Other GABA metabolites can also be identified in urine such as glycine. Finally, succinic semialdehyde dehydrogenase levels can be measured in cultured leukocytes of the patient. This occurs due to the accumulation of 4,5-dihydroxyhexanoic acid which is normally undetectable in mammalian tissues but is characteristic of SSADH deficiency. This agent can eventually compromise the pathways of fatty acid, glycine, and pyruvate metabolism, and then become detectable in patients' leukocytes. Such enzyme levels can also be compared to non-affected parents and siblings.


Treatments

A number of pharmacological treatments have been suggested or tested for efficacy on Aldh5a1-/- mice and/or humans. Below is a small sampling of the most common treatments though to be therapeutic to patients with SSADH deficiency. Unfortunately, there is very little data to support the benefit of the following treatments since few controlled studies have been conducted in patients. Two hallmarks of SSADH disorder are the increased levels of both GHB and GABA. Potential treatment modalities into biochemical and neurological correction should aim to reduce one or both while not exacerbating the other.


Vigabatrin

The most common therapeutic agent available for SSADH deficiency is one that reduces the levels of GHB via inhibition of
GABA transaminase In enzymology, 4-aminobutyrate transaminase (), also called GABA transaminase or 4-aminobutyrate aminotransferase, or GABA-T, is an enzyme that catalyzes the chemical reaction: :4-aminobutanoate + 2-oxoglutarate \rightleftharpoons succinate sem ...
. Vigabatrin is an irreversible inhibitor of GABA transaminases which leads to decreased levels of GHB and elevation of GABA. Clinical results after use are diverse, ranging from improved
ataxia Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements. Ataxia is a clinical manifestation indicating dysfunction of ...
and speech in some patients to worsening of symptoms in others. Lower doses (30–50 mg/kg per day) is associated with fewer side effects and greater improvement of clinical features at high doses of the therapeutic. Although vigabatrin has not been consistently successful in patients with SSADH deficiency, it has shown enhanced survival of Aldh5a1-/- mice at very high doses.


Sodium valproate

Sodium valproate has been used for the treatment of generalized and partial seizures in humans for both
epilepsy Epilepsy is a group of non-communicable neurological disorders characterized by recurrent epileptic seizures. Epileptic seizures can vary from brief and nearly undetectable periods to long periods of vigorous shaking due to abnormal electrical ...
and bipolar disorder. Valproate enhances GABA synthesis and release leading to augmented GABAergic functions in some areas of the brain. Successful interventions with valproate have been noted, but no clinical trials have been conducted thus far. However, Valproate is usually contraindicated as it may inhibit residual SSADH enzyme activity.


GABAB receptor antagonist: CGP-35348

The GABAB antagonist CGP-35348 (3-amino-propyl-(diethoxymethyl) phosphinic acid) has been used in Aldh5a1-/- mice with strong results. It has shown to reduce the frequency of absence seizures, though there have been some cases in which it worsened convulsive seizures.


GABAB agonist: baclofen

Baclofen (β-p-chlorophenyl-GABA) has some analgesic properties and has been traditionally used for spasticity. Its pharmacological effects primarily take place via presynaptic GABAB receptors in the spinal cord, simultaneously releasing excitatory neurotransmitters onto motor neurons. Because the number and function of GABAB receptors has been shown to progressively diminish in Aldh5a1-/- mice, such a therapy may prove to be useful. However, no data on the efficacy of baclofen on Aldh5a1-/- mice or human patients has been reported.


Taurine

Taurine is a non-protein sulfur amino acid that is found in high concentrations in human milk. It has been shown to have neuroprotective and neuromodulating properties. While it is an inhibitory
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neuro ...
, its ability to cross the blood brain barrier is limited. There is a lot of literature that indicates that taurine acts as antagonist at GABAA and GABAB receptors which may further enhance its ability to treat patients with SSADH deficiency, but further pharmacological studies are yet to be conducted to see if taurine could serve a therapeutic purpose. Taurine has been successfully used in a single case open study in a child with SSADH deficiency; with resolving of brain lesions, and improvement in coordination and gait.


Ketogenic diet

During prolonged periods of fasting, ketone bodies serve as the primary energy source for the brain. In 2006, Henderson et al. showed that there is a therapeutic effect of maintaining a ketogenic diet – a diet consisting of high fat/low carbohydrate meals – in children with epilepsy. Ketogenic diets have also been shown to have some neuroprotective effects in models of Parkinson's disease and Hypoxia (medical), hypoxia as well. In a recent study conducted at the Hospital for Sick Children in Canada in 2007, researchers found that a ketogenic diet prolonged the lifespan of Aldh5a1-/- mice by greater than 300%, along with the normalization of
ataxia Ataxia is a neurological sign consisting of lack of voluntary coordination of muscle movements that can include gait abnormality, speech changes, and abnormalities in eye movements. Ataxia is a clinical manifestation indicating dysfunction of ...
and some improvement in various seizure types seen in SSADH deficient murine models. These effects were in conjunction with "...a significant restoration of GABAergic Synapse, synaptic activity and region-specific restoration of GABAA receptor associated chloride channel binding." Ultimately, the data seen in the study indicated that a ketogenic diet may work in its ability to restore GABAergic inhibition. But further studies on murine models need to be conducted, ultimately leading to the possibility of conducting a controlled study on humans afflicted with the disorder. There is speculation that a ketogenic diet may be harmful for humans with SSADH deficiency as it may cause elevated levels of GHB in the bloodstream.


Other interventions

Other therapeutic interventions include: * ethosuximide and other anticonvulsant drugs * GHB receptor antagonist NCS-382 * GABAA receptor modulators * uridine * acamprosate * dopaminergic agents * dextromethorphan * glutamine * antioxidants * Lamotrigine The GABA(B) receptor antagonist, SGS-742, is currently being tested as a potential therapeutic in an NIH phase II clinical trial (NCT02019667).


Research

While SSADH deficiency has been studied for nearly 30 years, knowledge of the disorder and its pathophysiology remains unclear. However, the progress that has been made with both murine and human models of the disorder have provided a lot of insights into how the disease manifests itself and what more can be done in terms of therapeutic interventions. Much of the current research into SSADH has been led by a dedicated team of physicians and scientists, including Phillip L. Pearl, MD of the Boston Children's Hospital at Harvard Medical School and K. Michael Gibson, PhD of Washington State University College of Pharmacy. Both have contributed significant efforts to finding appropriate therapies for SSADH deficiency and have specifically spent most of their recent efforts into understanding the efficacy of the ketogenic diet for patients with SSADH deficiency. In addition, a lot of the research that was published in 2007 examined the pathogenesis for the disorder by examining the role of oxidative stress on tissues in various Cerebrum, cerebral structures of Aldh5a1-/- mice. Ultimately, the metabolic pathway of SSADH deficiency is known, but how the enzyme deficiency and accumulation of GABA and GHB contribute to the clinical phenotype is not. For the future however, treatment strategies should focus on both decreasing the total production of GHB and increasing the total concentration of GABA and further assessing whether the effects of these changes influences the neurological manifestations seen in patients afflicted with SSADH deficiency. Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).


Animal models

Several scientists have developed murine models of SSADH (Aldh5a1-/-) by typical gene methodology to create a uniform absence of the SSADH enzyme activity as well as accumulations of GHB and GABA in tissues and physiological fluids. The mice are born at the expected Mendelian frequencies for an autosomal recessive disorder. Most of the models include distinctive neurological phenotypes and exhibit
hypotonia Hypotonia is a state of low muscle tone (the amount of tension or resistance to stretch in a muscle), often involving reduced muscle strength. Hypotonia is not a specific medical disorder, but a potential manifestation of many different diseases a ...
, truncal ataxia, generalized tonic-clonic seizures associated with 100% mortality. The mice uniformly die at 3–4 postnatal weeks. While this model is considered to be more severe than the phenotypes seen in humans, currently, it is the most highly regarded, valid, metabolic model to study potential therapeutic interventions for the disorder. Studies have shown that alterations of both the GABAA receptor and the GABAB receptor early in the life of the Aldh5a1-/- mice can increase levels of GHB and enhance GABA release. Besides these effects, it has also been shown that "...a developmental down-regulation of GABAA receptor mediated neurotransmission in Aldh5a1-/- mice likely contributes to the progression of generalized convulsive seizures seen in mutant animals." Other studies have confirmed the relationship between elevated levels of GHB and MAP kinase in mutant animals contribute to profound myelin abnormalities.


See also

* Inborn errors of metabolism


References


Further reading


GeneReviews/NCBI/NIH/UW entry on Succinic Semialdehyde Dehydrogenase Deficiency
*


External links

{{Amino acid metabolic pathology Amino acid metabolism disorders Autosomal recessive disorders Rare diseases Gamma-Hydroxybutyric acid