Λ-ring
   HOME
*





Λ-ring
In algebra, a λ-ring or lambda ring is a commutative ring together with some operations λ''n'' on it that behave like the exterior powers of vector spaces. Many rings considered in K-theory carry a natural λ-ring structure. λ-rings also provide a powerful formalism for studying an action of the symmetric functions on the ring of polynomials, recovering and extending many classical results (). λ-rings were introduced by . For more about λ-rings see , , and . Motivation If ''V'' and ''W'' are finite-dimensional vector spaces over a field ''k'', then we can form the direct sum ''V'' ⊕ ''W'', the tensor product ''V'' ⊗ ''W'', and the ''n''-th exterior power of ''V'', Λ''n''(''V''). All of these are again finite-dimensional vector spaces over ''k''. The same three operations of direct sum, tensor product and exterior power are also available when working with ''k''-linear representations of a finite group, when working with vector bundles over some topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ring Of Symmetric Functions
In algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in ''n'' indeterminates, as ''n'' goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number ''n'' of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group. The ring of symmetric functions can be given a coproduct and a bilinear form making it into a positive selfadjoint graded Hopf algebra that is both commutative and cocommutative. Symmetric polynomials The study of symmetric functions is based on that of symmetric polynomials. In a polynomial ring in some finite set of indeterminates, a polynomial is called ''symmetric'' if it stays the same whenever the indeterminates are permuted in any way. More formally, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Short Exact Sequence
An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of

Algebraically Independent
In abstract algebra, a subset S of a field L is algebraically independent over a subfield K if the elements of S do not satisfy any non-trivial polynomial equation with coefficients in K. In particular, a one element set \ is algebraically independent over K if and only if \alpha is transcendental over K. In general, all the elements of an algebraically independent set S over K are by necessity transcendental over K, and over all of the field extensions over K generated by the remaining elements of S. Example The two real numbers \sqrt and 2\pi+1 are each transcendental numbers: they are not the roots of any nontrivial polynomial whose coefficients are rational numbers. Thus, each of the two singleton sets \ and \ are algebraically independent over the field \mathbb of rational numbers. However, the set \ is ''not'' algebraically independent over the rational numbers, because the nontrivial polynomial :P(x,y)=2x^2-y+1 is zero when x=\sqrt and y=2\pi+1. Algebraic independence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representation Ring
In mathematics, especially in the area of algebra known as representation theory, the representation ring (or Green ring after J. A. Green) of a group is a ring formed from all the (isomorphism classes of the) finite-dimensional linear representations of the group. Elements of the representation ring are sometimes called virtual representations.https://math.berkeley.edu/~teleman/math/RepThry.pdf, page 20 For a given group, the ring will depend on the base field of the representations. The case of complex coefficients is the most developed, but the case of algebraically closed fields of characteristic ''p'' where the Sylow ''p''-subgroups are cyclic is also theoretically approachable. Formal definition Given a group ''G'' and a field ''F'', the elements of its representation ring ''R''''F''(''G'') are the formal differences of isomorphism classes of finite dimensional linear ''F''-representations of ''G''. For the ring structure, addition is given by the direct sum of representat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological K-theory
In mathematics, topological -theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early work on topological -theory is due to Michael Atiyah and Friedrich Hirzebruch. Definitions Let be a compact Hausdorff space and k= \R or \Complex. Then K_k(X) is defined to be the Grothendieck group of the commutative monoid of isomorphism classes of finite-dimensional -vector bundles over under Whitney sum. Tensor product of bundles gives -theory a commutative ring structure. Without subscripts, K(X) usually denotes complex -theory whereas real -theory is sometimes written as KO(X). The remaining discussion is focused on complex -theory. As a first example, note that the -theory of a point is the integers. This is because vector bundles over a point are trivial and thus classified by their rank and the Grothendieck group of the natur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adams Operation
In mathematics, an Adams operation, denoted ψ''k'' for natural numbers ''k'', is a cohomology operation in topological K-theory, or any allied operation in algebraic K-theory or other types of algebraic construction, defined on a pattern introduced by Frank Adams. The basic idea is to implement some fundamental identities in symmetric function theory, at the level of vector bundles or other representing object in more abstract theories. Adams operations can be defined more generally in any λ-ring. Adams operations in K-theory Adams operations ψ''k'' on K theory (algebraic or topological) are characterized by the following properties. # ψ''k'' are ring homomorphisms. # ψ''k''(l)= lk if l is the class of a line bundle. # ψ''k'' are functorial. The fundamental idea is that for a vector bundle ''V'' on a topological space ''X'', there is an analogy between Adams operators and exterior powers, in which :ψ''k''(''V'') is to Λ''k''(''V'') as :the power sum Σ α''k'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Ring
In mathematics, a binomial ring is a commutative ring whose additive group is torsion-free and contains all binomial coefficients :\binom = \frac for ''x'' in the ring and ''n'' a positive integer. Binomial rings were introduced by . showed that binomial rings are essentially the same as λ-rings for which all Adams operation In mathematics, an Adams operation, denoted ψ''k'' for natural numbers ''k'', is a cohomology operation in topological K-theory, or any allied operation in algebraic K-theory or other types of algebraic construction, defined on a pattern introduce ...s are the identity. References * * *{{citation, mr=2649360 , last=Yau, first= Donald , title=Lambda-rings, publisher= World Scientific Publishing Co. Pte. Ltd., place= Hackensack, NJ, year= 2010 , isbn= 978-981-4299-09-1 , url=https://books.google.com/books?id=d7vKnjxyvxQC Ring theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Motivation
Motivation is the reason for which humans and other animals initiate, continue, or terminate a behavior at a given time. Motivational states are commonly understood as forces acting within the agent that create a disposition to engage in goal-directed behavior. It is often held that different mental states compete with each other and that only the strongest state determines behavior. This means that we can be motivated to do something without actually doing it. The paradigmatic mental state providing motivation is desire. But various other states, such as beliefs about what one ought to do or intentions, may also provide motivation. Motivation is derived from the word 'motive', which denotes a person's needs, desires, wants, or urges. It is the process of motivating individuals to take action in order to achieve a goal. The psychological elements fueling people's behavior in the context of job goals might include a desire for money. Various competing theories have been proposed co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binomial Coefficient
In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem. Commonly, a binomial coefficient is indexed by a pair of integers and is written \tbinom. It is the coefficient of the term in the polynomial expansion of the binomial power ; this coefficient can be computed by the multiplicative formula :\binom nk = \frac, which using factorial notation can be compactly expressed as :\binom = \frac. For example, the fourth power of is :\begin (1 + x)^4 &= \tbinom x^0 + \tbinom x^1 + \tbinom x^2 + \tbinom x^3 + \tbinom x^4 \\ &= 1 + 4x + 6 x^2 + 4x^3 + x^4, \end and the binomial coefficient \tbinom =\tfrac = \tfrac = 6 is the coefficient of the term. Arranging the numbers \tbinom, \tbinom, \ldots, \tbinom in successive rows for n=0,1,2,\ldots gives a triangular array called Pascal's triangle, satisfying the recurrence relation :\binom = \binom + \binom. The binomial coefficients occur in many areas of mathematics, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Elementary Symmetric Polynomial
In mathematics, specifically in commutative algebra, the elementary symmetric polynomials are one type of basic building block for symmetric polynomials, in the sense that any symmetric polynomial can be expressed as a polynomial in elementary symmetric polynomials. That is, any symmetric polynomial is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree in variables for each positive integer , and it is formed by adding together all distinct products of distinct variables. Definition The elementary symmetric polynomials in variables , written for , are defined by :\begin e_1 (X_1, X_2, \dots,X_n) &= \sum_ X_j,\\ e_2 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k,\\ e_3 (X_1, X_2, \dots,X_n) &= \sum_ X_j X_k X_l,\\ \end and so forth, ending with : e_n (X_1, X_2, \dots,X_n) = X_1 X_2 \cdots X_n. In general, for we define : e_k (X_1 , \ldots , X_n )=\sum_ X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]