HOME
*



picture info

Vector Spherical Harmonics
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the Spherical coordinate system, spherical coordinate basis vectors. Definition Several conventions have been used to define the VSH. We follow that of Barrera ''et al.''. Given a scalar spherical harmonic , we define three VSH: * \mathbf_ = Y_\hat, * \mathbf_ = r\nabla Y_, * \mathbf_ = \mathbf\times\nabla Y_, with \hat being the unit vector along the radial direction in Spherical coordinate system, spherical coordinates and \mathbf the vector along the radial direction with the same norm as the radius, i.e., \mathbf = r\hat. The radial factors are included to guarantee that the dimensions of the VSH are the same as those of the ordinary spherical harmonics and that the VSH do not depend on the radial spherical coordinate. The interest of these new vector fields is to separate the radia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spin-weighted Spherical Harmonics
In special functions, a topic in mathematics, spin-weighted spherical harmonics are generalizations of the standard spherical harmonics and—like the usual spherical harmonics—are functions on the sphere. Unlike ordinary spherical harmonics, the spin-weighted harmonics are gauge fields rather than scalar fields: mathematically, they take values in a complex line bundle. The spin-weighted harmonics are organized by degree , just like ordinary spherical harmonics, but have an additional spin weight that reflects the additional symmetry. A special basis of harmonics can be derived from the Laplace spherical harmonics , and are typically denoted by , where and are the usual parameters familiar from the standard Laplace spherical harmonics. In this special basis, the spin-weighted spherical harmonics appear as actual functions, because the choice of a polar axis fixes the gauge ambiguity. The spin-weighted spherical harmonics can be obtained from the standard spherical ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spinor Spherical Harmonics
In quantum mechanics, the spinor spherical harmonics (also known as spin spherical harmonics, spinor harmonics and Pauli spinors) are special functions defined over the sphere. The spinor spherical harmonics are the natural spinor analog of the vector spherical harmonics. While the standard spherical harmonics are a basis for the angular momentum operator, the spinor spherical harmonics are a basis for the total angular momentum operator (angular momentum plus Spin (physics), spin). These functions are used in analytical solutions to Dirac equation in a Particle in a spherically symmetric potential, radial potential. The spinor spherical harmonics are sometimes called Pauli central field spinors, in honor to Wolfgang Pauli who employed them in the solution of the hydrogen atom with spin–orbit interaction. Properties The spinor spherical harmonics are the spinors eigenstates of the total angular momentum operator squared: : \begin \mathbf j^2 Y_ &= j (j + 1) Y_ \\ \mathrm j ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Harmonics
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, each function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3), the group of rotations in three dimensions, and thus play a central role in the group theoretic discussion of SO(3). Spherical harmonics or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plane Wave Expansion
In physics, the plane-wave expansion expresses a plane wave as a linear combination of spherical waves: e^ = \sum_^\infty (2 \ell + 1) i^\ell j_\ell(k r) P_\ell(\hat \cdot \hat), where * is the imaginary unit, * is a wave vector of length , * is a position vector of length , * are spherical Bessel functions, * are Legendre polynomials, and * the hat denotes the unit vector. In the special case where is aligned with the ''z'' axis, e^ = \sum_^\infty (2 \ell + 1) i^\ell j_\ell(k r) P_\ell(\cos \theta), where is the spherical polar angle of . Expansion in spherical harmonics With the spherical-harmonic addition theorem the equation can be rewritten as e^ = 4 \pi \sum_^\infty \sum_^\ell i^\ell j_\ell(k r) Y_\ell^m(\hat) Y_\ell^(\hat), where * are the spherical harmonics and * the superscript denotes complex conjugation. Note that the complex conjugation can be interchanged between the two spherical harmonics due to symmetry. Applications The plane wave expansi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Bessel Function
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. Spherical Bessel functions with half-integer \alpha are obtained when the Helmholtz equation is solved in spherical coordinates. Applications of Bessel functions The Bessel function is a generaliza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Navier–Stokes Equations
In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes). The Navier–Stokes equations mathematically express conservation of momentum and conservation of mass for Newtonian fluids. They are sometimes accompanied by an equation of state relating pressure, temperature and density. They arise from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing ''viscous flow''. The difference between them and the closely related Euler equations is that Navier–Stokes equations take ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stokes' Law
In 1851, George Gabriel Stokes derived an expression, now known as Stokes' law, for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. Stokes' law is derived by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.Batchelor (1967), p. 233. Statement of the law The force of viscosity on a small sphere moving through a viscous fluid is given by: :F_ = 6 \pi \mu R v where: * ''F''d is the frictional force – known as Stokes' drag – acting on the interface between the fluid and the particle * ''μ'' is the dynamic viscosity (some authors use the symbol ''η'') * ''R'' is the radius of the spherical object * ''v'' is the flow velocity relative to the object. In SI units, ''F''d is given in newtons (= kg m s−2), ''μ'' in Pa·s (= kg m−1 s−1), ''R'' in meters, and ''v'' in m/s. Stokes' law makes the following assumptions for the behavior of a partic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wigner D-matrix
The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter stands for ''Darstellung'', which means "representation" in German. Definition of the Wigner D-matrix Let be generators of the Lie algebra of SU(2) and SO(3). In quantum mechanics, these three operators are the components of a vector operator known as ''angular momentum''. Examples are the angular momentum of an electron in an atom, electronic spin, and the angular momentum of a rigid rotor. In all cases, the three operators satisfy the following commutation relations, : _x,J_y= i J_z,\quad _z,J_x= i J_y,\quad _y,J_z= i J_x, where ''i'' is the purely imaginary number and Planck's constant has been set equal to one. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spherical Harmonics
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. Since the spherical harmonics form a complete set of orthogonal functions and thus an orthonormal basis, each function defined on the surface of a sphere can be written as a sum of these spherical harmonics. This is similar to periodic functions defined on a circle that can be expressed as a sum of circular functions (sines and cosines) via Fourier series. Like the sines and cosines in Fourier series, the spherical harmonics may be organized by (spatial) angular frequency, as seen in the rows of functions in the illustration on the right. Further, spherical harmonics are basis functions for irreducible representations of SO(3), the group of rotations in three dimensions, and thus play a central role in the group theoretic discussion of SO(3). Spherical harmonics or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]