Vector-valued Differential Form
In mathematics, a vector-valued differential form on a manifold ''M'' is a differential form on ''M'' with values in a vector space ''V''. More generally, it is a differential form with values in some vector bundle ''E'' over ''M''. Ordinary differential forms can be viewed as R-valued differential forms. An important case of vector-valued differential forms are Lie algebra-valued forms. (A connection form is an example of such a form.) Definition Let ''M'' be a smooth manifold and ''E'' → ''M'' be a smooth vector bundle over ''M''. We denote the space of smooth sections of a bundle ''E'' by Γ(''E''). An ''E''-valued differential form of degree ''p'' is a smooth section of the tensor product bundle of ''E'' with Λ''p''(''T'' ∗''M''), the ''p''-th exterior power of the cotangent bundle of ''M''. The space of such forms is denoted by :\Omega^p(M,E) = \Gamma(E\otimes\Lambda^pT^*M). Because Γ is a strong monoidal functor, this can also be interpreted as :\Gamma(E\otimes\Lambd ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Skew-symmetric Matrix
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition In terms of the entries of the matrix, if a_ denotes the entry in the i-th row and j-th column, then the skew-symmetric condition is equivalent to Example The matrix A = \begin 0 & 2 & -45 \\ -2 & 0 & -4 \\ 45 & 4 & 0 \end is skew-symmetric because A^\textsf = \begin 0 & -2 & 45 \\ 2 & 0 & 4 \\ -45 & -4 & 0 \end = -A . Properties Throughout, we assume that all matrix entries belong to a field \mathbb whose characteristic is not equal to 2. That is, we assume that , where 1 denotes the multiplicative identity and 0 the additive identity of the given field. If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. * The sum of two skew-symmetric matrices is skew-symmetric. * A scalar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exterior Derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus. If a differential -form is thought of as measuring the flux through an infinitesimal - parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a -parallelotope at each point. Definition The exterior derivative of a differential form of degree (also differential -form, or just -form for brevity here) is a differential form of degree . If is a smooth function (a -form), then the exterior derivative of is the differential of . That is, is the unique -form such that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graded-commutative
In Abstract algebra, algebra, a graded-commutative ring (also called a skew-commutative ring) is a graded ring that is commutative in the graded sense; that is, homogeneous elements ''x'', ''y'' satisfy :xy = (-1)^ yx, where , ''x'', and , ''y'', denote the degrees of ''x'' and ''y''. A commutative ring, commutative (non-graded) ring, with trivial grading, is a basic example. For a nontrivial example, an exterior algebra is generally not a commutative ring but is a ''graded''-commutative ring. A cup product on cohomology satisfies the skew-commutative relation; hence, a cohomology ring is graded-commutative. In fact, many examples of graded-commutative rings come from algebraic topology and homological algebra. References * David Eisenbud, ''Commutative Algebra. With a view toward algebraic geometry'', Graduate Texts in Mathematics, vol 150, Springer-Verlag, New York, 1995. * See also *DG algebra *graded-symmetric algebra *alternating algebra *supercommutative algebra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Associative Algebra
In mathematics, an associative algebra ''A'' over a commutative ring (often a field) ''K'' is a ring ''A'' together with a ring homomorphism from ''K'' into the center of ''A''. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of ''K''). The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a module or vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a commutative ring ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra for which the multiplication is commutative, or, equivalently, an associative algebra that is also a commutative ring. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Algebra
Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideal (ring theory), ideals, and module (mathematics), modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers \mathbb; and p-adic number, ''p''-adic integers. Commutative algebra is the main technical tool of algebraic geometry, and many results and concepts of commutative algebra are strongly related with geometrical concepts. The study of rings that are not necessarily commutative is known as noncommutative algebra; it includes ring theory, representation theory, and the theory of Banach algebras. Overview Commutative algebra is essentially the study of the rings occurring in algebraic number theory and algebraic geometry. Several concepts of commutative algebras have been developed in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set together with operations of multiplication and addition and scalar multiplication by elements of a field (mathematics), field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras where associativity of multiplication is assumed, and non-associative algebras, where associativity is not assumed (but not excluded, either). Given an integer ''n'', the ring (mathematics), ring of real matrix, real square matrix, square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra Bundle
In mathematics, an algebra bundle is a fiber bundle whose fibers are algebras and local trivializations respect the algebra structure. It follows that the transition functions are algebra isomorphisms. Since algebras are also vector spaces, every algebra bundle is a vector bundle. Examples include the tensor-algebra bundle, exterior bundle, and symmetric bundle associated to a given vector bundle, as well as the Clifford bundle In mathematics, a Clifford bundle is an algebra bundle whose fibers have the structure of a Clifford algebra and whose local trivializations respect the algebra structure. There is a natural Clifford bundle associated to any (pseudo) Riemannian man ... associated to any Riemannian vector bundle. See also * Lie algebra bundle References *. *. *. *. Vector bundles {{algebra-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Naturally Isomorphic
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D (both from C to D), then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted . An element of the form v \otimes w is called the tensor product of v and w. An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for V and W, a basis of V \otimes W is formed by all tensor products of a basis element of V and a basis element of W. The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space Z factors uniquely through a linear map V\otimes W\to Z (see the section below ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wedge Product
A wedge is a triangular shaped tool, a portable inclined plane, and one of the six simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular ( normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width..''McGraw-Hill Concise Encyclopedia of Science & Technology'', Third Ed., Sybil P. Parker, ed., McGraw-Hill, Inc., 1992, p. 2041. Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle. The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported. The wedge simply transports energy in the form of friction and collects it to the pointy end, consequently breaking the item. History Wedges have existed fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pullback Bundle
In mathematics, a pullback bundle or induced bundle is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle and a continuous map one can define a "pullback" of by as a bundle over . The fiber of over a point in is just the fiber of over . Thus is the disjoint union of all these fibers equipped with a suitable topology. Formal definition Let be a fiber bundle with abstract fiber and let be a continuous map. Define the pullback bundle by :f^E = \\subseteq B'\times E and equip it with the subspace topology and the projection map given by the projection onto the first factor, i.e., :\pi'(b',e) = b'.\, The projection onto the second factor gives a map :h \colon f^E \to E such that the following diagram commutes: :\begin f^E & \stackrel & E\\ ' \downarrow & & \downarrow \pi\\ B' & \stackrel f & B \end If is a local trivialization of then is a local trivialization of where :\psi(b',e) = (b', \mbox_2(\varphi(e))).\, It then fol ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |