Unitarity Triangle
   HOME
*





Unitarity Triangle
In quantum physics, unitarity is the condition that the time evolution of a quantum state according to the Schrödinger equation is mathematically represented by a unitary operator. This is typically taken as an axiom or basic postulate of quantum mechanics, while generalizations of or departures from unitarity are part of speculations about theories that may go beyond quantum mechanics. A unitarity bound is any inequality that follows from the unitarity of the evolution operator, i.e. from the statement that time evolution preserves inner products in Hilbert space. Hamiltonian evolution Time evolution described by a time-independent Hamiltonian is represented by a one-parameter family of unitary operators, for which the Hamiltonian is a generator: U(t) = e^. In the Schrödinger picture, the unitary operators are taken to act upon the system's quantum state, whereas in the Heisenberg picture, the time dependence is incorporated into the observables instead. Implications of u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Physics
Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Classical physics, the collection of theories that existed before the advent of quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, but is not sufficient for describing them at small (atomic and subatomic) scales. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale. Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values ( quantization); objects have characteristics of both particles and waves (wave–particle duality); and there are limits to ho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hermitian Matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th row and -th column, for all indices and : or in matrix form: A \text \quad \iff \quad A = \overline . Hermitian matrices can be understood as the complex extension of real symmetric matrices. If the conjugate transpose of a matrix A is denoted by A^\mathsf, then the Hermitian property can be written concisely as Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues. Other, equivalent notations in common use are A^\mathsf = A^\dagger = A^\ast, although note that in quantum mechanics, A^\ast typically means the complex conjugate only, and not the conjugate transpose. Alternative characterizations Hermit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stone's Theorem On One-parameter Unitary Groups
In mathematics, Stone's theorem on one-parameter unitary groups is a basic theorem of functional analysis that establishes a one-to-one correspondence between self-adjoint operators on a Hilbert space \mathcal and one-parameter families :(U_)_ of unitary operators that are strongly continuous, i.e., :\forall t_0 \in \R, \psi \in \mathcal: \qquad \lim_ U_t(\psi) = U_(\psi), and are homomorphisms, i.e., :\forall s,t \in \R : \qquad U_ = U_t U_s. Such one-parameter families are ordinarily referred to as strongly continuous one-parameter unitary groups. The theorem was proved by , and showed that the requirement that (U_t)_ be strongly continuous can be relaxed to say that it is merely weakly measurable, at least when the Hilbert space is separable. This is an impressive result, as it allows one to define the derivative of the mapping t \mapsto U_t, which is only supposed to be continuous. It is also related to the theory of Lie groups and Lie algebras. Formal statem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Channel
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the state of a qubit. An example of classical information is a text document transmitted over the Internet. More formally, quantum channels are completely positive (CP) trace-preserving maps between spaces of operators. In other words, a quantum channel is just a quantum operation viewed not merely as the reduced dynamics of a system but as a pipeline intended to carry quantum information. (Some authors use the term "quantum operation" to also include trace-decreasing maps while reserving "quantum channel" for strictly trace-preserving maps.) Memoryless quantum channel We will assume for the moment that all state spaces of the systems considered, classical or quantum, are finite-dimensional. The memoryless in the section title carries the same meaning as in classical information theory: the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Probability Axioms
The Kolmogorov axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases. An alternative approach to formalising probability, favoured by some Bayesians, is given by Cox's theorem. Axioms The assumptions as to setting up the axioms can be summarised as follows: Let (\Omega, F, P) be a measure space with P(E) being the probability of some event E'','' and P(\Omega) = 1. Then (\Omega, F, P) is a probability space, with sample space \Omega, event space F and probability measure P. First axiom The probability of an event is a non-negative real number: :P(E)\in\mathbb, P(E)\geq 0 \qquad \forall E \in F where F is the event space. It follows that P(E) is always finite, in contrast with more general measure theory. Theories which assign negative probability relax the first axiom. Second axiom This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Antiunitary Operator
In mathematics, an antiunitary transformation, is a bijective antilinear map :U: H_1 \to H_2\, between two complex Hilbert spaces such that :\langle Ux, Uy \rangle = \overline for all x and y in H_1, where the horizontal bar represents the complex conjugate. If additionally one has H_1 = H_2 then U is called an antiunitary operator. Antiunitary operators are important in quantum theory because they are used to represent certain symmetries, such as time reversal. Their fundamental importance in quantum physics is further demonstrated by Wigner's theorem. Invariance transformations In quantum mechanics, the invariance transformations of complex Hilbert space H leave the absolute value of scalar product invariant: : , \langle Tx, Ty \rangle, = , \langle x, y \rangle, for all x and y in H. Due to Wigner's theorem these transformations can either be unitary or antiunitary. Geometric Interpretation Congruences of the plane form two distinct classes. The first conserves ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faddeev–Popov Ghost
In physics, Faddeev–Popov ghosts (also called Faddeev–Popov gauge ghosts or Faddeev–Popov ghost fields) are extraneous fields which are introduced into gauge quantum field theories to maintain the consistency of the path integral formulation. They are named after Ludvig Faddeev and Victor Popov. A more general meaning of the word 'ghost' in theoretical physics is discussed in Ghost (physics). Overcounting in Feynman path integrals The necessity for Faddeev–Popov ghosts follows from the requirement that quantum field theories yield unambiguous, non-singular solutions. This is not possible in the path integral formulation when a gauge symmetry is present since there is no procedure for selecting among physically equivalent solutions related by gauge transformation. The path integrals overcount field configurations corresponding to the same physical state; the measure of the path integrals contains a factor which does not allow obtaining various results directly from the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauge Symmetry
In physics, a gauge theory is a type of field theory in which the Lagrangian (and hence the dynamics of the system itself) does not change (is invariant) under local transformations according to certain smooth families of operations (Lie groups). The term ''gauge'' refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called ''gauge transformations'', form a Lie group—referred to as the ''symmetry group'' or the ''gauge group'' of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the ''gauge field''. Gauge fields are included in the Lagrangian to ensure its invariance under the local group transformations (called ''gauge invariance''). When such a theory is quantized, the quanta of the gauge fields are called ''gauge bosons' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Feynman Diagram
In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other fields, such as solid-state theory. Frank Wilczek wrote that the calculations that won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Virtual Particle
A virtual particle is a theoretical transient particle that exhibits some of the characteristics of an ordinary particle, while having its existence limited by the uncertainty principle. The concept of virtual particles arises in the perturbation theory of quantum field theory where interactions between ordinary particles are described in terms of exchanges of virtual particles. A process involving virtual particles can be described by a schematic representation known as a Feynman diagram, in which virtual particles are represented by internal lines. Virtual particles do not necessarily carry the same mass as the corresponding real particle, although they always conserve energy and momentum. The closer its characteristics come to those of ordinary particles, the longer the virtual particle exists. They are important in the physics of many processes, including particle scattering and Casimir forces. In quantum field theory, forces—such as the electromagnetic repulsion or a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Optical Theorem
In physics, the optical theorem is a general law of wave scattering theory, which relates the forward scattering amplitude to the total cross section of the scatterer. It is usually written in the form :\sigma_\mathrm=\frac~\mathrm\,f(0), where (0) is the scattering amplitude with an angle of zero, that is the amplitude of the wave scattered to the center of a distant screen and is the wave vector in the incident direction. Because the optical theorem is derived using only conservation of energy, or in quantum mechanics from conservation of probability, the optical theorem is widely applicable and, in quantum mechanics, \sigma_\mathrm includes both elastic and inelastic scattering. The generalized optical theorem, first derived by Werner Heisenberg, allows for arbitrary outgoing directions ''k: :\int f(\mathbf',\mathbf'')f(\mathbf'',\mathbf)~d\mathbf''=\frac\mathrm~f(\mathbf', \mathbf). The original optical theorem is recovered by letting \mathbf'=\mathbf. History The optica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


S-matrix
In physics, the ''S''-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT). More formally, in the context of QFT, the ''S''-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the ''in-states'' and the ''out-states'') in the Hilbert space of physical states. A multi-particle state is said to be ''free'' (non-interacting) if it transforms under Lorentz transformations as a tensor product, or ''direct product'' in physics parlance, of ''one-particle states'' as prescribed by equation below. ''Asymptotically free'' then means that the state has this appearance in either the distant past or the distant future. While the ''S''-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no event horizons, it has a simple form in the case of the Minkowsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]