Universally Catenary Ring
In mathematics, a commutative ring ''R'' is catenary if for any pair of prime ideals :''p'', ''q'', any two strictly increasing chains :''p''=''p''0 ⊂''p''1 ... ⊂''p''''n''= ''q'' of prime ideals are contained in maximal strictly increasing chains from ''p'' to ''q'' of the same (finite) length. In a geometric situation, in which the dimension of an algebraic variety attached to a prime ideal will decrease as the prime ideal becomes bigger, the length of such a chain ''n'' is usually the difference in dimensions. A ring is called universally catenary if all finitely generated algebras over it are catenary rings. The word 'catenary' is derived from the Latin word ''catena'', which means "chain". There is the following chain of inclusions. Dimension formula Suppose that ''A'' is a Noetherian domain and ''B'' is a domain containing ''A'' that is finitely generated over ''A''. If ''P'' is a prime ideal of ''B'' and ''p'' its intersection with ''A'', then :\text(P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Localization Of A Ring
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object (algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localizes ''R'' wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gorenstein Local Ring
In commutative algebra, a Gorenstein local ring is a commutative Noetherian local ring ''R'' with finite injective dimension as an ''R''-module. There are many equivalent conditions, some of them listed below, often saying that a Gorenstein ring is self-dual in some sense. Gorenstein rings were introduced by Grothendieck in his 1961 seminar (published in ). The name comes from a duality property of singular plane curves studied by (who was fond of claiming that he did not understand the definition of a Gorenstein ring). The zero-dimensional case had been studied by . and publicized the concept of Gorenstein rings. Frobenius rings are noncommutative analogs of zero-dimensional Gorenstein rings. Gorenstein schemes are the geometric version of Gorenstein rings. For Noetherian local rings, there is the following chain of inclusions. Definitions A Gorenstein ring is a commutative Noetherian ring such that each localization at a prime ideal is a Gorenstein local ring, as define ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Local Ring
In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal. The concept of local rings was introduced by Wolfgang Krull in 1938 under the name ''Stellenringe''. The English term ''local ring'' is due to Zariski. Definition and first consequences A ring ''R'' is a local ring if it has any one of the following equivalent properties: * ''R'' has a unique maximal left ideal. * ''R'' has a unique maximal right ideal. * 1 ≠ 0 and the sum of any two non-units in ''R'' is a non-unit. * 1 ≠ 0 and if ''x'' is any element of ''R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring Theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological algebra, homological properties and Polynomial identity ring, polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formally Catenary Ring
In algebra, specifically in the theory of commutative rings, a quasi-unmixed ring (also called a formally equidimensional ring in EGA) is a Noetherian ring A such that for each prime ideal ''p'', the completion of the localization ''Ap'' is equidimensional, i.e. for each minimal prime ideal ''q'' in the completion \widehat, \dim \widehat/q = \dim A_p = the Krull dimension of ''Ap''. Equivalent conditions A Noetherian integral domain is quasi-unmixed if and only if it satisfies Nagata's altitude formula. (See also: #formally catenary ring below.) Precisely, a quasi-unmixed ring is a ring in which the unmixed theorem, which characterizes a Cohen–Macaulay ring, holds for integral closure of an ideal; specifically, for a Noetherian ring A, the following are equivalent: *A is quasi-unmixed. *For each ideal ''I'' generated by a number of elements equal to its height, the integral closure \overline is unmixed in height (each prime divisor has the same height as the others). *For ea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Excellent Ring
In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal. The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities can be solved; showed this in characteristic (algebra), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasi-excellent Ring
In commutative algebra, a quasi-excellent ring is a Noetherian commutative ring that behaves well with respect to the operation of completion, and is called an excellent ring if it is also universally catenary. Excellent rings are one answer to the problem of finding a natural class of "well-behaved" rings containing most of the rings that occur in number theory and algebraic geometry. At one time it seemed that the class of Noetherian rings might be an answer to this problem, but Masayoshi Nagata and others found several strange counterexamples showing that in general Noetherian rings need not be well-behaved: for example, a normal Noetherian local ring need not be analytically normal. The class of excellent rings was defined by Alexander Grothendieck (1965) as a candidate for such a class of well-behaved rings. Quasi-excellent rings are conjectured to be the base rings for which the problem of resolution of singularities can be solved; showed this in characteristic 0, but th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Local Ring
In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ideal m, and suppose ''a''1, ..., ''a''''n'' is a minimal set of generators of m. Then by Krull's principal ideal theorem ''n'' ≥ dim ''A'', and ''A'' is defined to be regular if ''n'' = dim ''A''. The appellation ''regular'' is justified by the geometric meaning. A point ''x'' on an algebraic variety ''X'' is nonsingular if and only if the local ring \mathcal_ of germs at ''x'' is regular. (See also: regular scheme.) Regular local rings are ''not'' related to von Neumann regular rings. For Noetherian local rings, there is the following chain of inclusions: Characterizations There are a number of useful definitions of a regular local ring, one of which is mentioned above. In particular, if A is a Noetherian local ring with maximal idea ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |