Universal Variable Formulation
   HOME
*





Universal Variable Formulation
In orbital mechanics, the universal variable formulation is a method used to solve the two-body Kepler problem. It is a generalized form of Kepler's Equation, extending them to apply not only to elliptic orbits, but also parabolic and hyperbolic orbits. It thus is applicable to many situations in the Solar System, where orbits of widely varying eccentricities are present. Introduction A common problem in orbital mechanics is the following: given a body in an orbit and a time ''t0'', find the position of the body at any other given time ''t''. For elliptical orbits with a reasonably small eccentricity, solving Kepler's Equation by methods like Newton's method gives adequate results. However, as the orbit becomes more and more eccentric, the numerical iteration may start to converge slowly or not at all. Furthermore, Kepler's equation cannot be applied to parabolic and hyperbolic orbits, since it specifically is tailored to elliptic orbits. Derivation Although equations similar to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Orbital Mechanics
Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity, including both spacecraft and natural astronomical bodies such as star systems, planets, moons, and comets. Orbital mechanics focuses on spacecraft trajectories, including orbital maneuvers, orbital plane changes, and interplanetary transfers, and is used by mission planners to predict the results of propulsive maneuvers. General relativity is a more exact theory than Newton's laws for calculating orbits, and it is sometimes necessary to use it for greater accuracy or in high-gravity situations (e.g. orbits ne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parabolic Orbit
In astrodynamics or celestial mechanics a parabolic trajectory is a Kepler orbit with the eccentricity equal to 1 and is an unbound orbit that is exactly on the border between elliptical and hyperbolic. When moving away from the source it is called an escape orbit, otherwise a capture orbit. It is also sometimes referred to as a C3 = 0 orbit (see Characteristic energy). Under standard assumptions a body traveling along an escape orbit will coast along a parabolic trajectory to infinity, with velocity relative to the central body tending to zero, and therefore will never return. Parabolic trajectories are minimum-energy escape trajectories, separating positive-energy hyperbolic trajectories from negative-energy elliptic orbits. Velocity The orbital velocity (v) of a body travelling along parabolic trajectory can be computed as: :v = \sqrt where: *r is the radial distance of orbiting body from central body, *\mu is the standard gravitational parameter. At any positi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laguerre's Method
In numerical analysis, Laguerre's method is a root-finding algorithm tailored to polynomials. In other words, Laguerre's method can be used to numerically solve the equation for a given polynomial . One of the most useful properties of this method is that it is, from extensive empirical study, very close to being a "sure-fire" method, meaning that it is almost guaranteed to always converge to ''some'' root of the polynomial, no matter what initial guess is chosen. However, for computer computation, more efficient methods are known, with which it is guaranteed to find all roots (see ) or all real roots (see Real-root isolation). This method is named in honour of Edmond Laguerre, a French mathematician. Definition The algorithm of the Laguerre method to find one root of a polynomial of degree is: * Choose an initial guess * For ** If p(x_k) is very small, exit the loop ** Calculate G = \frac ** Calculate H = G^2 - \frac ** Calculate a = \frac , where the sign is chosen to gi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root-finding Algorithm
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function , from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number such that . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound). Solving an equation is the same as finding the roots of the function . Thus root-finding algorithms allow solving any equation defined by continuous functions. However, most root-finding algorithms do not guarantee that they will find all the roots; in particular, if such an algorithm does not find any root, that does not mean that no root exists. Most nume ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stumpff Function
In celestial mechanics, the Stumpff functions ''c''''k''(''x''), developed by Karl Stumpff, are used for analyzing orbits using the universal variable formulation. They are defined by the formula: c_k (x) = \frac - \frac + \frac - \cdots = \sum_^\infty for k = 0, 1, 2, 3,\ldots The series above converges absolutely for all real ''x''. By comparing the Taylor series expansion of the trigonometric functions sin and cos with ''c''0(''x'') and ''c''1(''x''), a relationship can be found: \begin c_0(x) &= \cos , \\ exc_1(x) &= \frac, \end \quad \textx > 0 Similarly, by comparing with the expansion of the hyperbolic functions sinh and cosh we find: \begin c_0(x) &= \cosh , \\ exc_1(x) &= \frac, \end \quad \textx < 0 The Stumpff functions satisfy the : x c_(x) = \frac - c_k(x),\textk = 0, 1, 2, \ldots\,.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harmonic Oscillator
In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'': \vec F = -k \vec x, where ''k'' is a positive coefficient, constant. If ''F'' is the only force acting on the system, the system is called a simple harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about the equilibrium point, with a constant amplitude and a constant frequency (which does not depend on the amplitude). If a frictional force (Damping ratio, damping) proportional to the velocity is also present, the harmonic oscillator is described as a damped oscillator. Depending on the friction coefficient, the system can: * Oscillate with a frequency lower than in the Damping ratio, undamped case, and an amplitude decreasing with time (Damping ratio, underdamped oscillator). * Decay to the equilibrium p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Euclidean Vector
In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a '' directed line segment'', or graphically as an arrow connecting an ''initial point'' ''A'' with a ''terminal point'' ''B'', and denoted by \overrightarrow . A vector is what is needed to "carry" the point ''A'' to the point ''B''; the Latin word ''vector'' means "carrier". It was first used by 18th century astronomers investigating planetary revolution around the Sun. The magnitude of the vector is the distance between the two points, and the direction refers to the direction of displacement from ''A'' to ''B''. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operations whic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regularization (mathematics)
In mathematics, statistics, finance, computer science, particularly in machine learning and inverse problems, regularization is a process that changes the result answer to be "simpler". It is often used to obtain results for ill-posed problems or to prevent overfitting. Although regularization procedures can be divided in many ways, following delineation is particularly helpful: * Explicit regularization is regularization whenever one explicitly adds a term to the optimization problem. These terms could be priors, penalties, or constraints. Explicit regularization is commonly employed with ill-posed optimization problems. The regularization term, or penalty, imposes a cost on the optimization function to make the optimal solution unique. * Implicit regularization is all other forms of regularization. This includes, for example, early stopping, using a robust loss function, and discarding outliers. Implicit regularization is essentially ubiquitous in modern machine learning appr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eccentric Anomaly
In orbital mechanics, the eccentric anomaly is an angular parameter that defines the position of a body that is moving along an elliptic Kepler orbit. The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly. Graphical representation Consider the ellipse with equation given by: :\frac + \frac = 1, where ''a'' is the ''semi-major'' axis and ''b'' is the ''semi-minor'' axis. For a point on the ellipse, ''P'' = ''P''(''x'', ''y''), representing the position of an orbiting body in an elliptical orbit, the eccentric anomaly is the angle ''E'' in the figure. The eccentric anomaly ''E'' is one of the angles of a right triangle with one vertex at the center of the ellipse, its adjacent side lying on the ''major'' axis, having hypotenuse ''a'' (equal to the ''semi-major'' axis of the ellipse), and opposite side (perpendicular to the ''major'' axis and touching th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]