HOME
*





Uniform Matroid
In mathematics, a uniform matroid is a matroid in which the independent sets are exactly the sets containing at most ''r'' elements, for some fixed integer ''r''. An alternative definition is that every permutation of the elements is a symmetry. Definition The uniform matroid U^r_n is defined over a set of n elements. A subset of the elements is independent if and only if it contains at most r elements. A subset is a basis if it has exactly r elements, and it is a circuit if it has exactly r+1 elements. The rank of a subset S is \min(, S, ,r) and the rank of the matroid is r. A matroid of rank r is uniform if and only if all of its circuits have exactly r+1 elements. The matroid U^2_n is called the n-point line. Duality and minors The dual matroid of the uniform matroid U^r_n is another uniform matroid U^_n. A uniform matroid is self-dual if and only if r=n/2. Every minor of a uniform matroid is uniform. Restricting a uniform matroid U^r_n by one element (as long as r 0) prod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent ( cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source is Welsh (1976). See Brylawsk ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sylvester Matroid
In matroid theory, a Sylvester matroid is a matroid in which every pair of elements belongs to a three-element circuit (a ''triangle'') of the matroid.. Example The n-point line (i.e., the rank 2 uniform matroid on n elements, U^2_n) is a Sylvester matroid because every pair of elements is a basis and every triple is a circuit. A Sylvester matroid of rank three may be formed from any Steiner triple system, by defining the lines of the matroid to be the triples of the system. Sylvester matroids of rank three may also be formed from Sylvester–Gallai configurations, configurations of points and lines (in non-Euclidean spaces) with no two-point line. For example, the Fano plane and the Hesse configuration give rise to Sylvester matroids with seven and nine elements respectively, and may be interpreted either as Steiner triple systems or as Sylvester–Gallai configurations. Properties A Sylvester matroid with rank r must have at least 2^r-1 elements; this bound is tight only for the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree (graph Theory)
In graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ..., a tree is an undirected graph in which any two Vertex (graph theory), vertices are connected by ''exactly one'' Path (graph theory), path, or equivalently a Connected graph, connected Cycle (graph theory), acyclic undirected graph. A forest is an undirected graph in which any two vertices are connected by ''at most one'' path, or equivalently an acyclic undirected graph, or equivalently a Disjoint union of graphs, disjoint union of trees. A polytreeSee . (or directed tree or oriented treeSee .See . or singly connected networkSee .) is a directed acyclic graph (DAG) whose underlying undirected graph is a tree. A polyforest (or directed forest or oriented forest) is a directed acyclic graph whose underlying undirecte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycle Graph
In graph theory, a cycle graph or circular graph is a graph that consists of a single cycle, or in other words, some number of vertices (at least 3, if the graph is simple) connected in a closed chain. The cycle graph with vertices is called . The number of vertices in equals the number of edges, and every vertex has degree 2; that is, every vertex has exactly two edges incident with it. Terminology There are many synonyms for "cycle graph". These include simple cycle graph and cyclic graph, although the latter term is less often used, because it can also refer to graphs which are merely not acyclic. Among graph theorists, cycle, polygon, or ''n''-gon are also often used. The term ''n''-cycle is sometimes used in other settings. A cycle with an even number of vertices is called an even cycle; a cycle with an odd number of vertices is called an odd cycle. Properties A cycle graph is: * 2-edge colorable, if and only if it has an even number of vertices * 2-regular * 2-ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dual Graph
In the mathematical discipline of graph theory, the dual graph of a plane graph is a graph that has a vertex for each face of . The dual graph has an edge for each pair of faces in that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge of has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of . The definition of the dual depends on the choice of embedding of the graph , so it is a property of plane graphs (graphs that are already embedded in the plane) rather than planar graphs (graphs that may be embedded but for which the embedding is not yet known). For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph. Historically, the first form of graph duality to be recognized was the association of the Platonic solids into pairs of dual polyhedra. Graph duality is a topological ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dipole Graph
In graph theory, a dipole graph, dipole, bond graph, or linkage, is a multigraph consisting of two vertices connected with a number of parallel edges. A dipole graph containing edges is called the dipole graph, and is denoted by . The dipole graph is dual to the cycle graph . The honeycomb as an abstract graph is the maximal abelian covering graph of the dipole graph , while the diamond crystal as an abstract graph is the maximal abelian covering graph of . Similarly to the Platonic graphs, the dipole graphs form the skeletons of the hosohedra. Their duals, the cycle graphs, form the skeletons of the dihedra A dihedron is a type of polyhedron, made of two polygon faces which share the same set of ''n'' edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat .... References * * Jonathan L. Gross and Jay Yellen, 2006. ''Graph Theory and Its Applications, 2nd Ed.'', p. 17. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graphic Matroid
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs. Definition A matroid may be defined as a family of finite sets (called the "independent sets" of the matroid) that is closed under subsets and that satisfies the "exchange property": if sets A and B are both independent, and A is larger than B, then there is an element x\in A\setminus B such that B\cup\ remains independent. If G is an undirected graph, and F is the family of sets of edges that form forests in G, then F is clearly closed under subsets (re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gammoid
In matroid theory, a field within mathematics, a gammoid is a certain kind of matroid, describing sets of vertices that can be reached by vertex-disjoint paths in a directed graph. The concept of a gammoid was introduced and shown to be a matroid by , based on considerations related to Menger's theorem characterizing the obstacles to the existence of systems of disjoint paths. Gammoids were given their name by . and studied in more detail by .. Definition Let G be a directed graph, S be a set of starting vertices, and T be a set of destination vertices (not necessarily disjoint from S). The gammoid \Gamma derived from this data has T as its set of elements. A subset I of T is independent in \Gamma if there exists a set of vertex-disjoint paths whose starting points all belong to S and whose ending points are exactly I.. A strict gammoid is a gammoid in which the set T of destination vertices consists of every vertex in G. Thus, a gammoid is a restriction of a strict gammoid, to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transversal Matroid
In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid Axiomatic system, axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite matroid is equivalent to a geometric lattice. Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory. Definition There are many equivalent (Cryptomorphism, cryptomorphic) ways to define a (finite) matroid.A standard source for basic definitions and results about matroids is Oxley (1992). An older standard source ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paving Matroid
In the mathematical theory of matroids, a paving matroid is a matroid in which every circuit has size at least as large as the matroid's rank. In a matroid of rank r every circuit has size at most r+1, so it is equivalent to define paving matroids as the matroids in which the size of every circuit belongs to the set \.. It has been conjectured that almost all matroids are paving matroids. Examples Every simple matroid of rank three is a paving matroid; for instance this is true of the Fano matroid. The Vámos matroid provides another example, of rank four. Uniform matroids of rank r have the property that every circuit is of length exactly r+1 and hence are all paving matroids; the converse does not hold, for example, the cycle matroid of the complete graph K_4 is paving but not uniform. A Steiner system S(t,k,v) is a pair (S,\mathcal) where S is a finite set of size v and \mathcal is a family of k-element subsets of S with the property that every t-element subset of S is also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partition Matroid
In mathematics, a partition matroid or partitional matroid is a matroid that is a direct sum of uniform matroids. It is defined over a base set in which the elements are partitioned into different categories. For each category, there is a ''capacity constraint'' - a maximum number of allowed elements from this category. The independent sets of a partition matroid are exactly the sets in which, for each category, the number of elements from this category is at most the category capacity. Formal definition Let C_i be a collection of disjoint sets ("categories"). Let d_i be integers with 0\le d_i\le , C_i, ("capacities"). Define a subset I\subset \bigcup_i C_i to be "independent" when, for every index i, , I\cap C_i, \le d_i. The sets satisfying this condition form the independent sets of a matroid, called a partition matroid. The sets C_i are called the categories or the blocks of the partition matroid. A basis of the partition matroid is a set whose intersection with every bloc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]