Sylvester Matroid
   HOME

TheInfoList



OR:

In
matroid theory In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in ...
, a Sylvester matroid is a matroid in which every pair of elements belongs to a three-element circuit (a ''triangle'') of the matroid..


Example

The n-point line (i.e., the rank 2
uniform matroid In mathematics, a uniform matroid is a matroid in which the independent sets are exactly the sets containing at most ''r'' elements, for some fixed integer ''r''. An alternative definition is that every permutation of the elements is a symmetry. ...
on n elements, U^2_n) is a Sylvester matroid because every pair of elements is a basis and every triple is a circuit. A Sylvester matroid of rank three may be formed from any
Steiner triple system 250px, thumbnail, The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) ...
, by defining the lines of the matroid to be the triples of the system. Sylvester matroids of rank three may also be formed from
Sylvester–Gallai configuration In geometry, a Sylvester–Gallai configuration consists of a finite subset of the points of a projective space with the property that the line through any two of the points in the subset also passes through at least one other point of the subset. ...
s, configurations of points and lines (in non-Euclidean spaces) with no two-point line. For example, the
Fano plane In finite geometry, the Fano plane (after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines c ...
and the
Hesse configuration In geometry, the Hesse configuration, introduced by Colin Maclaurin and studied by , is a configuration of 9 points and 12 lines with three points per line and four lines through each point. It can be realized in the complex projective plane as ...
give rise to Sylvester matroids with seven and nine elements respectively, and may be interpreted either as Steiner triple systems or as Sylvester–Gallai configurations.


Properties

A Sylvester matroid with
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * H ...
r must have at least 2^r-1 elements; this bound is tight only for the
projective space In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally ...
s over
GF(2) (also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field of two elements (GF is the initialism of ''Galois field'', another name for finite fields). Notations and \mathbb Z_2 may be encountered although they can be confused with ...
, of which the Fano plane is an example. In a Sylvester matroid, every independent set can be augmented by one more element to form a circuit of the matroid. Sylvester matroids (other than U^2_n) cannot be represented over the
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s (this is the
Sylvester–Gallai theorem The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester ...
), nor can they be
oriented In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
..


History

Sylvester matroids were studied and named by after
James Joseph Sylvester James Joseph Sylvester (3 September 1814 – 15 March 1897) was an English mathematician. He made fundamental contributions to matrix theory, invariant theory, number theory, partition theory, and combinatorics. He played a leadership ro ...
, because they violate the
Sylvester–Gallai theorem The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester ...
(for points and lines in the
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
, or in higher-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
s) that for every
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. Th ...
of points there is a line containing only two of the points.


References

{{reflist Matroid theory