Tromino
   HOME
*



picture info

Tromino
A tromino or triomino is a polyomino of order 3, that is, a polygon in the plane made of three equal-sized squares connected edge-to-edge. Symmetry and enumeration When rotations and reflections are not considered to be distinct shapes, there are only two different ''free'' trominoes: "I" and "L" (the "L" shape is also called "V"). Since both free trominoes have reflection symmetry, they are also the only two ''one-sided'' trominoes (trominoes with reflections considered distinct). When rotations are also considered distinct, there are six ''fixed'' trominoes: two I and four L shapes. They can be obtained by rotating the above forms by 90°, 180° and 270°. Rep-tiling and Golomb's tromino theorem Both types of tromino can be dissected into ''n''2 smaller trominos of the same type, for any integer ''n'' > 1. That is, they are rep-tiles. Continuing this dissection recursively leads to a tiling of the plane, which in many cases is an aperiodic tiling. In this context, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetromino
A tetromino is a geometric shape composed of four squares, connected orthogonally (i.e. at the edges and not the corners). Tetrominoes, like dominoes and pentominoes, are a particular type of polyomino. The corresponding polycube, called a tetracube, is a geometric shape composed of four cubes connected orthogonally. A popular use of tetrominoes is in the video game ''Tetris'' created by the Soviet game designer Alexey Pajitnov, which refers to them as tetriminos. The tetrominoes used in the game are specifically the one-sided tetrominoes. The tetrominoes Free tetrominoes Polyominos are formed by joining unit squares along their edges. A free polyomino is a polyomino considered up to congruence. That is, two free polyominos are the same if there is a combination of translations, rotations, and reflections that turns one into the other. A free tetromino is a free polyomino made from four squares. There are five free tetrominoes. The free tetrominoes have the following symmetry: * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trominoes
A tromino or triomino is a polyomino of order 3, that is, a polygon in the plane made of three equal-sized squares connected edge-to-edge. Symmetry and enumeration When rotations and reflections are not considered to be distinct shapes, there are only two different ''free'' trominoes: "I" and "L" (the "L" shape is also called "V"). Since both free trominoes have reflection symmetry, they are also the only two ''one-sided'' trominoes (trominoes with reflections considered distinct). When rotations are also considered distinct, there are six ''fixed'' trominoes: two I and four L shapes. They can be obtained by rotating the above forms by 90°, 180° and 270°. Rep-tiling and Golomb's tromino theorem Both types of tromino can be dissected into ''n''2 smaller trominos of the same type, for any integer ''n'' > 1. That is, they are rep-tiles. Continuing this dissection recursively leads to a tiling of the plane, which in many cases is an aperiodic tiling. In this context, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the study ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Free Polyomino
A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge. It is a polyform whose cells are squares. It may be regarded as a finite subset of the regular square tiling. Polyominoes have been used in popular puzzles since at least 1907, and the enumeration of pentominoes is dated to antiquity. Many results with the pieces of 1 to 6 squares were first published in ''Fairy Chess Review'' between the years 1937 to 1957, under the name of "dissection problems." The name ''polyomino'' was invented by Solomon W. Golomb in 1953, and it was popularized by Martin Gardner in a November 1960 "Mathematical Games" column in ''Scientific American''. Related to polyominoes are polyiamonds, formed from equilateral triangles; polyhexes, formed from regular hexagons; and other plane polyforms. Polyominoes have been generalized to higher dimensions by joining cubes to form polycubes, or hypercubes to form polyhypercubes. In statistical physics, the study ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rep-tile
In the geometry of tessellations, a rep-tile or reptile is a shape that can be dissected into smaller copies of the same shape. The term was coined as a pun on animal reptiles by recreational mathematician Solomon W. Golomb and popularized by Martin Gardner in his "Mathematical Games" column in the May 1963 issue of ''Scientific American''. In 2012 a generalization of rep-tiles called self-tiling tile sets was introduced by Lee Sallows in ''Mathematics Magazine''. Terminology A rep-tile is labelled rep-''n'' if the dissection uses ''n'' copies. Such a shape necessarily forms the prototile for a tiling of the plane, in many cases an aperiodic tiling. A rep-tile dissection using different sizes of the original shape is called an irregular rep-tile or irreptile. If the dissection uses ''n'' copies, the shape is said to be irrep-''n''. If all these sub-tiles are of different sizes then the tiling is additionally described as perfect. A shape that is rep-''n'' or irrep-''n'' is tri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chair Tiling
In geometry, a chair tiling (or L tiling) is a nonperiodic substitution tiling created from L-tromino prototiles. These prototiles are examples of rep-tiles and so an iterative process of decomposing the L tiles into smaller copies and then rescaling them to their original size can be used to cover patches of the plane. Chair tilings do not possess translational symmetry, i.e., they are examples of ''nonperiodic tilings'', but the chair tiles are not aperiodic tiles since they are not forced to tile nonperiodically by themselves. The ''trilobite'' and ''cross'' tiles are aperiodic tiles that enforce the chair tiling substitution structure and these tiles have been modified to a simple aperiodic set of tiles using matching rules enforcing the same structure. Barge et al. have computed the Čech cohomology In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is name ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cut-the-knot
Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Mathematics, senior instructor at Hebrew University and software consultant at Ben Gurion University. He wrote extensively about arithmetic, probability, algebra, geometry, trigonometry and mathematical games. He was known for his contribution to heuristics and mathematics education, creating and maintaining the mathematically themed educational website ''Cut-the-Knot'' for the Mathematical Association of America (MAA) Online. He was a pioneer in mathematical education on the internet, having started ''Cut-the-Knot'' in October 1996.Interview with Alexander ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Domino (mathematics)
In mathematics, a domino is a polyomino of order 2, that is, a polygon in the plane made of two equal-sized squares connected edge-to-edge. When rotations and reflections are not considered to be distinct shapes, there is only one ''free'' domino. Since it has reflection symmetry, it is also the only ''one-sided'' domino (with reflections considered distinct). When rotations are also considered distinct, there are two ''fixed'' dominoes: The second one can be created by rotating the one above by 90°. In a wider sense, the term ''domino'' is sometimes understood to mean a tile of any shape. Packing and tiling Dominos can tile the plane in a countably infinite number of ways. The number of tilings of a 2×''n'' rectangle with dominoes is F_n, the ''n''th Fibonacci number. Domino tilings figure in several celebrated problems, including the Aztec diamond problem in which large diamond-shaped regions have a number of tilings equal to a power of two, with most tilings appearing r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Monthly
''The American Mathematical Monthly'' is a mathematical journal founded by Benjamin Finkel in 1894. It is published ten times each year by Taylor & Francis for the Mathematical Association of America. The ''American Mathematical Monthly'' is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. In this the ''American Mathematical Monthly'' fulfills a different role from that of typical mathematical research journals. The ''American Mathematical Monthly'' is the most widely read mathematics journal in the world according to records on JSTOR. Tables of contents with article abstracts from 1997–2010 are availablonline The MAA gives the Lester R. Ford Awards annually to "authors of articles of expository excellence" published in the ''American Mathematical Monthly''. Editors *2022– ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Induction
Mathematical induction is a method for proving that a statement ''P''(''n'') is true for every natural number ''n'', that is, that the infinitely many cases ''P''(0), ''P''(1), ''P''(2), ''P''(3), ...  all hold. Informal metaphors help to explain this technique, such as falling dominoes or climbing a ladder: A proof by induction consists of two cases. The first, the base case, proves the statement for ''n'' = 0 without assuming any knowledge of other cases. The second case, the induction step, proves that ''if'' the statement holds for any given case ''n'' = ''k'', ''then'' it must also hold for the next case ''n'' = ''k'' + 1. These two steps establish that the statement holds for every natural number ''n''. The base case does not necessarily begin with ''n'' = 0, but often with ''n'' = 1, and possibly with any fixed natural number ''n'' = ''N'', establishing the truth of the statement for all natu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solomon W
Solomon (; , ),, ; ar, سُلَيْمَان, ', , ; el, Σολομών, ; la, Salomon also called Jedidiah ( Hebrew: , Modern: , Tiberian: ''Yăḏīḏăyāh'', "beloved of Yah"), was a monarch of ancient Israel and the son and successor of David, according to the Hebrew Bible and the Old Testament. He is described as having been the penultimate ruler of an amalgamated Israel and Judah. The hypothesized dates of Solomon's reign are 970–931 BCE. After his death, his son and successor Rehoboam would adopt harsh policy towards the northern tribes, eventually leading to the splitting of the Israelites between the Kingdom of Israel in the north and the Kingdom of Judah in the south. Following the split, his patrilineal descendants ruled over Judah alone. The Bible says Solomon built the First Temple in Jerusalem, dedicating the temple to Yahweh, or God in Judaism. Solomon is portrayed as wealthy, wise and powerful, and as one of the 48 Jewish prophets. He is also the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mutilated Chessboard Problem
The mutilated chessboard problem is a tiling puzzle posed by Max Black in 1946 that asks: Suppose a standard 8×8 chessboard (or checkerboard) has two diagonally opposite corners removed, leaving 62 squares. Is it possible to place 31 dominoes of size 2×1 so as to cover all of these squares? It is an impossible puzzle: there is no domino tiling meeting these conditions. One proof of its impossibility uses the fact that, with the corners removed, the chessboard has 32 squares of one color and 30 of the other, but each domino must cover equally many squares of each color. More generally, if any two squares are removed from the chessboard, the rest can be tiled by dominoes if and only if the removed squares are of different colors. This problem has been used as a test case for automated reasoning, creativity, and the philosophy of mathematics. History The mutilated chessboard problem is an instance of domino tiling of grids and polyominoes, also known as "dimer models", a gen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]