Trivial Subgroup
   HOME
*





Trivial Subgroup
In mathematics, a trivial group or zero group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element and so it is usually denoted as such: 0, 1, or e depending on the context. If the group operation is denoted \, \cdot \, then it is defined by e \cdot e = e. The similarly defined is also a group since its only element is its own inverse, and is hence the same as the trivial group. The trivial group is distinct from the empty set, which has no elements, hence lacks an identity element, and so cannot be a group. Definitions Given any group G, the group consisting of only the identity element is a subgroup of G, and, being the trivial group, is called the of G. The term, when referred to "G has no nontrivial proper subgroups" refers to the only subgroups of G being the trivial group \ and the group G itself. Properties The trivial group is cyclic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isomorphic
In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μορφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An automorphism is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a univer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures such as groups and rings. The term ''identity element'' is often shortened to ''identity'' (as in the case of additive identity and multiplicative identity) when there is no possibility of confusion, but the identity implicitly depends on the binary operation it is associated with. Definitions Let be a set  equipped with a binary operation ∗. Then an element  of  is called a if for all  in , and a if for all  in . If is both a left identity and a right identity, then it is called a , or simply an . An identity with respect to addition is called an (often denoted as 0) and an identity with respect to multiplication is called a (often denoted as 1). These need not be ordinary additi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). The empty set may also be called the void set. Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets. In the past, "0" was occasionally used as a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trivial Ring
In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which for all ''x'' and ''y''. This article refers to the one-element ring.) In the category of rings, the zero ring is the terminal object, whereas the ring of integers Z is the initial object. Definition The zero ring, denoted or simply 0, consists of the one-element set with the operations + and · defined such that 0 + 0 = 0 and 0 · 0 = 0. Properties * The zero ring is the unique ring in which the additive identity 0 and multiplicative identity 1 coincide. (Proof: If in a ring ''R'', then for all ''r'' in ''R'', we have . The proof of the last equality is found here.) * The zero ring is commutative. * The element 0 in the zero ring is a unit, serving as its own multiplicative inverse. * The unit group of the zero ring is the trivial gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zero Object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): is terminal if for every object in there exists exactly one morphism . Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object. A pointed category is one with a zero object. A strict initial object is one for which every morphism into is an isomorphism. Examples * The empty set is the unique initial object in Set, the category of sets. Every one-element set (singleton) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. * In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Category Of Groups
In mathematics, the category Grp (or Gp) has the class of all groups for objects and group homomorphisms for morphisms. As such, it is a concrete category. The study of this category is known as group theory. Relation to other categories There are two forgetful functors from Grp, M: Grp → Mon from groups to monoids and U: Grp → Set from groups to sets. M has two adjoints: one right, I: Mon→Grp, and one left, K: Mon→Grp. I: Mon→Grp is the functor sending every monoid to the submonoid of invertible elements and K: Mon→Grp the functor sending every monoid to the Grothendieck group of that monoid. The forgetful functor U: Grp → Set has a left adjoint given by the composite KF: Set→Mon→Grp, where F is the free functor; this functor assigns to every set ''S'' the free group on ''S.'' Categorical properties The monomorphisms in Grp are precisely the injective homomorphisms, the epimorphisms are precisely the surjective homomorphisms, and the isomorphisms are precise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Initial Object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): is terminal if for every object in there exists exactly one morphism . Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object. A pointed category is one with a zero object. A strict initial object is one for which every morphism into is an isomorphism. Examples * The empty set is the unique initial object in Set, the category of sets. Every one-element set (singleton) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. * In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Terminal Object
In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): is terminal if for every object in there exists exactly one morphism . Initial objects are also called coterminal or universal, and terminal objects are also called final. If an object is both initial and terminal, it is called a zero object or null object. A pointed category is one with a zero object. A strict initial object is one for which every morphism into is an isomorphism. Examples * The empty set is the unique initial object in Set, the category of sets. Every one-element set (singleton) is a terminal object in this category; there are no zero objects. Similarly, the empty space is the unique initial object in Top, the category of topological spaces and every one-point space is a terminal object in this category. * In t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]