Torsion Sheaf
   HOME
*





Torsion Sheaf
In mathematics, a torsion sheaf is a sheaf of abelian groups \mathcal on a site for which, for every object ''U'', the space of sections \Gamma(U, \mathcal) is a torsion abelian group. Similarly, for a prime number ''p'', we say a sheaf \mathcal is ''p''-torsion if every section over any object is killed by a power of ''p''. A torsion sheaf on an étale site is the union of its constructible subsheaves. See also * Twisted sheaf In mathematics, a twisted sheaf is a variant of a coherent sheaf. Precisely, it is specified by: an open covering in the étale topology ''U'i'', coherent sheaves ''F'i'' over ''U'i'', a Čech 2-cocycle ''θ'' on the covering ''U'i'' ... Notes References * * J. S. Milne, ''Étale Cohomology'' * Sheaf theory {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or morphisms) from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck Topology
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category ''C'' that makes the objects of ''C'' act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site. Grothendieck topologies axiomatize the notion of an open cover. Using the notion of covering provided by a Grothendieck topology, it becomes possible to define sheaves on a category and their cohomology. This was first done in algebraic geometry and algebraic number theory by Alexander Grothendieck to define the étale cohomology of a scheme. It has been used to define other cohomology theories since then, such as ℓ-adic cohomology, flat cohomology, and crystalline cohomology. While Grothendieck topologies are most often used to define cohomology theories, they have found other applications as well, such as to John Tate's theory of rigid analytic geometry. There is a natural way to associate a site to an ordinary top ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Torsion Group
In group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements. For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent dividing its order. Infinite examples Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups. Another example is the direct sum of all dihedral groups. None of these examples has a finite generating set. Explicit examples of finitely generated infinite periodic groups were constructed by Golod, based on joint work with Shafarevich, see Golod–Shafarevich theorem, and by Aleshin and Grigorchuk using automata. These groups have infinite exponent; examples with finite exponent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Constructible Sheaf
In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space ''X'', such that ''X'' is the union of a finite number of locally closed subsets on each of which the sheaf is a locally constant sheaf. It has its origins in algebraic geometry, where in étale cohomology constructible sheaves are defined in a similar way . For the derived category of constructible sheaves, see a section in ℓ-adic sheaf. The finiteness theorem in étale cohomology states that the higher direct images of a constructible sheaf are constructible. Definition of étale constructible sheaves on a scheme ''X'' Here we use the definition of constructible étale sheaves from the book by Freitag and Kiehl referenced below. In what follows in this subsection, all sheaves \mathcal on schemes X are étale sheaves unless otherwise noted. A sheaf \mathcal is called constructible if X can be written as a finite union of locally closed subschemes i_Y:Y \to X such that for each subsche ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twisted Sheaf
In mathematics, a twisted sheaf is a variant of a coherent sheaf. Precisely, it is specified by: an open covering in the étale topology ''U''''i'', coherent sheaves ''F''''i'' over ''U''''i'', a Čech 2-cocycle ''θ'' on the covering ''U''''i'' as well as the isomorphisms :g_: F_j, _ \overset\to F_i, _ satisfying *g_ = \operatorname_, *g_ = g_^, *g_ \circ g_ \circ g_ = \theta_ \operatorname_. The notion of twisted sheaves was introduced by Jean Giraud. The above definition due to Căldăraru is down-to-earth but is equivalent to a more sophisticated definition in terms of gerbe; see § 2.1.3 of . See also * Reflexive sheaf In algebraic geometry, a reflexive sheaf is a coherent sheaf that is isomorphic to its second dual (as a sheaf of modules) via the canonical map. The second dual of a coherent sheaf is called the reflexive hull of the sheaf. A basic example of a re ... * Torsion sheaf References * * Geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]