Theta Divisors
   HOME
*





Theta Divisors
In mathematics, the theta divisor Θ is the divisor in the sense of algebraic geometry defined on an abelian variety ''A'' over the complex numbers (and principally polarized) by the zero locus of the associated Riemann theta-function. It is therefore an algebraic subvariety of ''A'' of dimension dim ''A'' − 1. Classical theory Classical results of Bernhard Riemann describe Θ in another way, in the case that ''A'' is the Jacobian variety ''J'' of an algebraic curve ( compact Riemann surface) ''C''. There is, for a choice of base point ''P'' on ''C'', a standard mapping of ''C'' to ''J'', by means of the interpretation of ''J'' as the linear equivalence classes of divisors on ''C'' of degree 0. That is, ''Q'' on ''C'' maps to the class of ''Q'' − ''P''. Then since ''J'' is an algebraic group, ''C'' may be added to itself ''k'' times on ''J'', giving rise to subvarieties ''W''''k''. If ''g'' is the genus of ''C'', Riemann proved that Θ is a translate on ''J'' of ''W ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genus (mathematics)
In mathematics, genus (plural genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic ''χ'', via the relationship ''χ'' = 2 − 2''g'' for closed surfaces, where ''g'' is the genus. For surfaces with ''b'' boundary components, the equation reads ''χ'' = 2 − 2''g'' − ''b''. In layman's terms, it's the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has 1 such h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theta Functions
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should be ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exact Sequence
An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of

picture info

David Mumford
David Bryant Mumford (born 11 June 1937) is an American mathematician known for his work in algebraic geometry and then for research into vision and pattern theory. He won the Fields Medal and was a MacArthur Fellow. In 2010 he was awarded the National Medal of Science. He is currently a University Professor Emeritus in the Division of Applied Mathematics at Brown University. Early life Mumford was born in Worth, West Sussex in England, of an English father and American mother. His father William started an experimental school in Tanzania and worked for the then newly created United Nations. He attended Phillips Exeter Academy, where he received a Westinghouse Science Talent Search prize for his relay-based computer project. Mumford then went to Harvard University, where he became a student of Oscar Zariski. At Harvard, he became a Putnam Fellow in 1955 and 1956. He completed his PhD in 1961, with a thesis entitled ''Existence of the moduli scheme for curves of any genus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Kempf
George Rushing Kempf (Globe, Arizona, August 12, 1944 – Lawrence, Kansas, July 16, 2002) was a mathematician who worked on algebraic geometry, who proved the Riemann–Kempf singularity theorem, the Kempf–Ness theorem, the Kempf vanishing theorem, and who introduced Kempf varieties. Mumford on Kempf 'I met George in 1970 when he burst on the algebraic geometry scene with a spectacular PhD thesis. His thesis gave a wonderful analysis of the singularities of the subvarieties W_r of the Jacobian of a curve obtained by adding the curve to itself r times inside its Jacobian. This was one of the major themes that he pursued throughout his career: understanding the interaction of a curve with its Jacobian and especially to the map from the r-fold symmetric product of the curve to the Jacobian. In his thesis he gave a determinantal representation both of W_r and of its tangent cone at all its singular points, which gives you a complete understanding of the nature of these singulariti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartier Divisor
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvariet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Holomorphic Line Bundle
In mathematics, a holomorphic vector bundle is a complex vector bundle over a complex manifold such that the total space is a complex manifold and the projection map is holomorphic. Fundamental examples are the holomorphic tangent bundle of a complex manifold, and its dual, the holomorphic cotangent bundle. A holomorphic line bundle is a rank one holomorphic vector bundle. By Serre's GAGA, the category of holomorphic vector bundles on a smooth complex projective variety ''X'' (viewed as a complex manifold) is equivalent to the category of algebraic vector bundles (i.e., locally free sheaves of finite rank) on ''X''. Definition through trivialization Specifically, one requires that the trivialization maps :\phi_U : \pi^(U) \to U \times \mathbf^k are biholomorphic maps. This is equivalent to requiring that the transition functions :t_ : U\cap V \to \mathrm_k(\mathbf) are holomorphic maps. The holomorphic structure on the tangent bundle of a complex manifold is guaranteed by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Section
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or morphisms) from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Multiplicity Of A Point
Multiplicity may refer to: In science and the humanities * Multiplicity (mathematics), the number of times an element is repeated in a multiset * Multiplicity (philosophy), a philosophical concept * Multiplicity (psychology), having or using multiple personalities * Multiplicity (chemistry), multiplicity in quantum chemistry is a function of angular spin momentum * Multiplicity (software), a software application which allows a user to control two or more computers from one mouse and keyboard * Multiplicity, a type of relationship in class diagrams for Unified Modeling Language used in software engineering * Multiplicity (statistical mechanics), the number of microstates corresponding to a particular macrostate in a thermodynamic system A thermodynamic system is a body of matter and/or radiation, confined in space by walls, with defined permeabilities, which separate it from its surroundings. The surroundings may include other thermodynamic systems, or physical systems that ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear System Of Divisors
In algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a ''linear system'' of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors ''D'' on a general scheme or even a ringed space (''X'', ''O''''X''). Linear system of dimension 1, 2, or 3 are called a pencil, a net, or a web, respectively. A map determined by a linear system is sometimes called the Kodaira map. Definition Given the fundamental idea of a rational function on a general variety X, or in other words of a function f in the function field of X, f \in k(X), divisors D,E \in \text(X) are linearly equivalent divisors if :D = E + (f)\ where (f) denotes the divisor of zeroes and poles of the function f. Note that i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Non-singular
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent may ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]