Tertiary Ideal
   HOME
*





Tertiary Ideal
In mathematics, a tertiary ideal is a two-sided ideal in a perhaps noncommutative ring that cannot be expressed as a nontrivial intersection of a right fractional ideal with another ideal. Tertiary ideals generalize primary ideals to the case of noncommutative rings. Although primary decompositions do not exist in general for ideals in noncommutative rings, tertiary decompositions do, at least if the ring is Noetherian. Every primary ideal is tertiary. Tertiary ideals and primary ideals coincide for commutative rings. To any (two-sided) ideal, a tertiary ideal can be associated called the tertiary radical, defined as :t(I) = \. Then ''t''(''I'') always contains ''I''. If ''R'' is a (not necessarily commutative) Noetherian ring and ''I'' a right ideal in ''R'', then ''I'' has a unique irredundant decomposition into tertiary ideals :I = T_1 \cap \dots \cap T_n. See also * Primary ideal * Lasker–Noether theorem In mathematics, the Lasker–Noether theorem states that every No ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ideal (ring Theory)
In ring theory, a branch of abstract algebra, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer (even or odd) results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group. Among the integers, the ideals correspond one-for-one with the non-negative integers: in this ring, every ideal is a principal ideal consisting of the multiples of a single non-negative number. However, in other rings, the ideals may not correspond directly to the ring elements, and certain properties of integers, when generalized to rings, attach more naturally to the ideals than to the elements of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ring (mathematics)
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ''ring'' is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series. Formally, a ''ring'' is an abelian group whose operation is called ''addition'', with a second binary operation called ''multiplication'' that is associative, is distributive over the addition operation, and has a multiplicative identity element. (Some authors use the term " " with a missing i to refer to the more general structure that omits this last requirement; see .) Whether a ring is commutative (that is, whether the order in which two elements are multiplied might change the result) has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fractional Ideal
In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed ''integral ideals'' for clarity. Definition and basic results Let R be an integral domain, and let K = \operatornameR be its field of fractions. A fractional ideal of R is an R-submodule I of K such that there exists a non-zero r \in R such that rI\subseteq R. The element r can be thought of as clearing out the denominators in I, hence the name fractional ideal. The principal fractional ideals are those R-submodules of K generated by a single nonzero element of K. A fractional ideal I is contained in R if, and only if, it is an ('integral') ideal of R. A fractional id ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primary Ideal
In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y''''n'' is also an element of ''Q'', for some ''n'' > 0. For example, in the ring of integers Z, (''p''''n'') is a primary ideal if ''p'' is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals. This result is known as the Lasker–Noether theorem. Consequently, an irreducible ideal of a Noetherian ring is primary. Various methods of generalizing primary ideals to noncommutative rings exist, but the topic is most often studied for commutative rings. Therefore, the rings in this article are assumed to be commutative rings with identity. Examples and properties * The definition can be rephrased in a more symmetric manner: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Noncommutative Ring
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term ''noncommutative ring'' is used instead of ''ring'' to refer to a unspecified ring which is not necessarily commutative, and hence may be commutative. Generally, this is for emphasizing that the studied properties are not restricted to commutative rings, as, in many contexts, ''ring'' is used as a shortcut for ''commutative ring''. Although some authors do not assume that rings have a multiplicative identity, in this article we make that assumption unless stated otherwise. Examples Some examples of noncommutative rings: * The ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primary Decomposition
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related to, but not quite the same as, powers of prime ideals). The theorem was first proven by for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by . The Lasker–Noether theorem is an extension of the fundamental theorem of arithmetic, and more generally the fundamental theorem of finitely generated abelian groups to all Noetherian rings. The theorem plays an important role in algebraic geometry, by asserting that every algebraic set may be uniquely decomposed into a finite union of irreducible components. It has a straightforward extension to modules stating that every submodule of a finitely generated module over a Noetherian ring is a finite intersection of primary submodules ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primary Ideal
In mathematics, specifically commutative algebra, a proper ideal ''Q'' of a commutative ring ''A'' is said to be primary if whenever ''xy'' is an element of ''Q'' then ''x'' or ''y''''n'' is also an element of ''Q'', for some ''n'' > 0. For example, in the ring of integers Z, (''p''''n'') is a primary ideal if ''p'' is a prime number. The notion of primary ideals is important in commutative ring theory because every ideal of a Noetherian ring has a primary decomposition, that is, can be written as an intersection of finitely many primary ideals. This result is known as the Lasker–Noether theorem. Consequently, an irreducible ideal of a Noetherian ring is primary. Various methods of generalizing primary ideals to noncommutative rings exist, but the topic is most often studied for commutative rings. Therefore, the rings in this article are assumed to be commutative rings with identity. Examples and properties * The definition can be rephrased in a more symmetric manner: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lasker–Noether Theorem
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are related to, but not quite the same as, powers of prime ideals). The theorem was first proven by for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by . The Lasker–Noether theorem is an extension of the fundamental theorem of arithmetic, and more generally the fundamental theorem of finitely generated abelian groups to all Noetherian rings. The theorem plays an important role in algebraic geometry, by asserting that every algebraic set may be uniquely decomposed into a finite union of irreducible components. It has a straightforward extension to modules stating that every submodule of a finitely generated module over a Noetherian ring is a finite intersection of primary submodules ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]