Toral Subalgebra
   HOME
*





Toral Subalgebra
In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple (or diagonalizable over an algebraically closed field). Equivalently, a Lie algebra is toral if it contains no nonzero nilpotent elements. Over an algebraically closed field, every toral Lie algebra is abelian; thus, its elements are simultaneously diagonalizable. In semisimple and reductive Lie algebras A subalgebra \mathfrak h of a semisimple Lie algebra \mathfrak g is called toral if the adjoint representation of \mathfrak h on \mathfrak g, \operatorname(\mathfrak h) \subset \mathfrak(\mathfrak g) is a toral subalgebra. A maximal toral Lie subalgebra of a finite-dimensional semisimple Lie algebra, or more generally of a finite-dimensional reductive Lie algebra, over an algebraically closed field of characteristic 0 is a Cartan subalgebra and vice versa. In particular, a maximal toral Lie subalgebra in this setting is self-normalizing, coincides with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reductive Lie Algebra
In mathematics, a Lie algebra is reductive if its adjoint representation is completely reducible, whence the name. More concretely, a Lie algebra is reductive if it is a direct sum of a semisimple Lie algebra and an abelian Lie algebra: \mathfrak = \mathfrak \oplus \mathfrak; there are alternative characterizations, given below. Examples The most basic example is the Lie algebra \mathfrak_n of n \times n matrices with the commutator as Lie bracket, or more abstractly as the endomorphism algebra of an ''n''-dimensional vector space, \mathfrak(V). This is the Lie algebra of the general linear group GL(''n''), and is reductive as it decomposes as \mathfrak_n = \mathfrak_n \oplus \mathfrak, corresponding to traceless matrices and scalar matrices. Any semisimple Lie algebra or abelian Lie algebra is ''a fortiori'' reductive. Over the real numbers, compact Lie algebras are reductive. Definitions A Lie algebra \mathfrak over a field of characteristic 0 is called reductive if any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Torus
In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a compact Lie group ''G'' is a compact, connected, abelian Lie subgroup of ''G'' (and therefore isomorphic to the standard torus T''n''). A maximal torus is one which is maximal among such subgroups. That is, ''T'' is a maximal torus if for any torus ''T''′ containing ''T'' we have ''T'' = ''T''′. Every torus is contained in a maximal torus simply by dimensional considerations. A noncompact Lie group need not have any nontrivial tori (e.g. R''n''). The dimension of a maximal torus in ''G'' is called the rank of ''G''. The rank is well-defined since all maximal tori turn out to be conjugate. For semisimple groups the rank is equal to the number of nodes in the associated Dynkin diagram. Examples The unitary group U(''n'') has as a maximal torus the subgroup of all diagonal matrices. That is, : T = \left\. ''T'' is clearl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Engel's Theorem
In representation theory, a branch of mathematics, Engel's theorem states that a finite-dimensional Lie algebra \mathfrak g is a nilpotent Lie algebra_if_and_only_if_for_each_X_\in_\mathfrak_g,_the_adjoint_representation_of_a_Lie_algebra.html" "title="mathfrak,\mathfrak ... if and only if for each X \in \mathfrak g, the adjoint representation of a Lie algebra">adjoint map :\operatorname(X)\colon \mathfrak \to \mathfrak, given by \operatorname(X)(Y) = [X, Y], is a nilpotent endomorphism on \mathfrak; i.e., \operatorname(X)^k = 0 for some ''k''. It is a consequence of the theorem, also called Engel's theorem, which says that if a Lie algebra of matrices consists of nilpotent matrices, then the matrices can all be simultaneously brought to a strictly upper triangular form. Note that if we merely have a Lie algebra of matrices which is nilpotent ''as a Lie algebra'', then this conclusion does ''not'' follow (i.e. the naïve replacement in Lie's theorem of "solvable" with "nilpotent", ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nilpotent Lie Algebra
In mathematics, a Lie algebra \mathfrak is nilpotent if its lower central series terminates in the zero subalgebra. The ''lower central series'' is the sequence of subalgebras : \mathfrak \geq mathfrak,\mathfrak\geq mathfrak,[\mathfrak,\mathfrak \geq [\mathfrak, mathfrak,[\mathfrak,\mathfrak] \geq ... We write \mathfrak_0 = \mathfrak, and \mathfrak_n = [\mathfrak,\mathfrak_] for all n > 0. If the lower central series eventually arrives at the zero subalgebra, then the Lie algebra is called nilpotent. The lower central series for Lie algebras is analogous to the lower central series in group theory, and nilpotent Lie algebras are analogs of nilpotent groups. The nilpotent Lie algebras are precisely those that can be obtained from abelian Lie algebras, by successive central extensions. Note that the definition means that, viewed as a non-associative non-unital algebra, a Lie algebra \mathfrak is nilpotent if it is nilpotent as an ideal. Definition Let \mathfrak be a Lie algeb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Killing Form
In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) show that Killing form has a close relationship to the semisimplicity of the Lie algebras. History and name The Killing form was essentially introduced into Lie algebra theory by in his thesis. In a historical survey of Lie theory, has described how the term ''"Killing form"'' first occurred in 1951 during one of his own reports for the Séminaire Bourbaki; it arose as a misnomer, since the form had previously been used by Lie theorists, without a name attached. Some other authors now employ the term ''" Cartan-Killing form"''. At the end of the 19th century, Killing had noted that the coefficients of the characteristic equation of a regular semisimple element of a Lie algebra are invariant under the adjoint group, from which it follows tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-normalizing
In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set of elements \mathrm_G(S) of ''G'' such that each member g \in \mathrm_G(S) commutes with each element of ''S'', or equivalently, such that conjugation by g leaves each element of ''S'' fixed. The normalizer of ''S'' in ''G'' is the set of elements \mathrm_G(S) of ''G'' that satisfy the weaker condition of leaving the set S \subseteq G fixed under conjugation. The centralizer and normalizer of ''S'' are subgroups of ''G''. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets ''S''. Suitably formulated, the definitions also apply to semigroups. In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring ''R'' is a subring of ''R''. This article also deals with centralizers and normalize ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan Subalgebra
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra \mathfrak of a Lie algebra \mathfrak that is self-normalising (if ,Y\in \mathfrak for all X \in \mathfrak, then Y \in \mathfrak). They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra \mathfrak over a field of characteristic 0 . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements ''x'' such that the adjoint endomorphism \operatorname(x) : \mathfrak \to \mathfrak is semisimple (i.e., diagonalizable). Sometimes this characterization is simply taken as the definition of a Cartan subalgebra.pg 231 In general, a subalgebra is called toral if it consists of semisimple elements. Over an algebraically closed field, a toral subalgebra is automatically abelian. Thus, over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Adjoint Endomorphism
In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is GL(n, \mathbb), the Lie group of real ''n''-by-''n'' invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible ''n''-by-''n'' matrix g to an endomorphism of the vector space of all linear transformations of \mathbb^n defined by: x \mapsto g x g^ . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of ''G'' on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. Definition Let ''G'' be a Lie group, and let :\Psi: G \to \operatorname(G) be the mapping , with Aut(''G'') the automorphism group of ''G'' and given by the inner automorphism (conjugation) :\Psi_g(h)= ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Subalgebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings (Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form, κ(x,y) = tr(ad(''x'')ad(''y'')), is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable ideals; * the radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie algebra is the semidirect product of a solvable ideal (its radical) and a semisimple algebra. In particular, there is no nonzero Lie algebra that is both solvable and semisimple. Semisimple L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simultaneously Diagonalizable
In linear algebra, a square matrix A is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P and a diagonal matrix D such that or equivalently (Such D are not unique.) For a finite-dimensional vector space a linear map T:V\to V is called diagonalizable if there exists an ordered basis of V consisting of eigenvectors of T. These definitions are equivalent: if T has a matrix representation T = PDP^ as above, then the column vectors of P form a basis consisting of eigenvectors of and the diagonal entries of D are the corresponding eigenvalues of with respect to this eigenvector basis, A is represented by Diagonalization is the process of finding the above P and Diagonalizable matrices and maps are especially easy for computations, once their eigenvalues and eigenvectors are known. One can raise a diagonal matrix D to a power by simply raising the diagonal entries to that power, and the determ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]