HOME
*





Ternary Tree
: In computer science, a ternary tree is a tree data structure in which each node has at most three child nodes, usually distinguished as "left", “mid” and "right". Nodes with children are parent nodes, and child nodes may contain references to their parents. Outside the tree, there is often a reference to the "root" node (the ancestor of all nodes), if it exists. Any node in the data structure can be reached by starting at root node and repeatedly following references to either the left, mid or right child. Ternary trees are used to implement Ternary search trees and Ternary heaps. Definition * Directed Edge - The link from the parent to the child. * Root - The node with no parents. There is at most one root node in a rooted tree. * Leaf Node - Any node that has no children. * Parent Node - Any node connected by a directed edge to its child or children. * Child Node - Any node connected to a parent node by a directed edge. * Depth - Length of the path from the root to the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ternary Tree
: In computer science, a ternary tree is a tree data structure in which each node has at most three child nodes, usually distinguished as "left", “mid” and "right". Nodes with children are parent nodes, and child nodes may contain references to their parents. Outside the tree, there is often a reference to the "root" node (the ancestor of all nodes), if it exists. Any node in the data structure can be reached by starting at root node and repeatedly following references to either the left, mid or right child. Ternary trees are used to implement Ternary search trees and Ternary heaps. Definition * Directed Edge - The link from the parent to the child. * Root - The node with no parents. There is at most one root node in a rooted tree. * Leaf Node - Any node that has no children. * Parent Node - Any node connected by a directed edge to its child or children. * Child Node - Any node connected to a parent node by a directed edge. * Depth - Length of the path from the root to the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tree Data Structure
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent. These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes in a single straight line. Binary trees are a commonly used type, which constrain the number of children for each parent to exactly two. When the order of the children is specified, this data structure corresponds to an ordered tree in graph theory. A value or pointer to other data may be associated with every node in the tre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Node (computer Science)
A node is a basic unit of a data structure, such as a linked list or tree data structure. Nodes contain data and also may link to other nodes. Links between nodes are often implemented by pointers. Nodes and Trees Nodes are often arranged into tree structures. A node represents the information contained in a single data structure. These nodes may contain a value or condition, or possibly serve as another independent data structure. Nodes are represented by a single parent node. The highest point on a tree structure is called a root node, which does not have a parent node, but serves as the parent or 'grandparent' of all of the nodes below it in the tree. The height of a node is determined by the total number of edges on the path from that node to the furthest leaf node, and the height of the tree is equal to the height of the root node. Node depth is determined by the distance between that particular node and the root node. The root node is said to have a depth of zero. Data can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ternary Search Tree
In computer science, a ternary search tree is a type of trie (sometimes called a ''prefix tree'') where nodes are arranged in a manner similar to a binary search tree, but with up to three children rather than the binary tree's limit of two. Like other prefix trees, a ternary search tree can be used as an associative map structure with the ability for incremental string search. However, ternary search trees are more space efficient compared to standard prefix trees, at the cost of speed. Common applications for ternary search trees include spell-checking and auto-completion. Description Each node of a ternary search tree stores a single character, an object (or a pointer to an object depending on implementation), and pointers to its three children conventionally named ''equal kid'', ''lo kid'' and ''hi kid'', which can also be referred respectively as ''middle (child)'', ''lower (child)'' and ''higher (child)''. A node may also have a pointer to its parent node as well as an in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ternary Heap
Ternary (from Latin ''ternarius'') or trinary is an adjective meaning "composed of 3 (number), three items". It can refer to: Mathematics and logic * Ternary numeral system, a base-3 counting system ** Balanced ternary, a positional numeral system, useful for comparison logic * Ternary logic, a logic system with the values ''true'', ''false'', and some other value * Ternary plot or ternary graph, a plot that shows the ratios of three proportions * Ternary relation, a finitary relation in which the number of places in the relation is three * Ternary operation, an operation that takes three parameters * arity, Ternary function, a function that takes three arguments Computing * Ternary signal, a signal that can assume three significant values * Ternary computer, a computer using a ternary numeral system * Ternary tree, a tree data structure in computer science **Ternary search tree, a ternary (three-way) tree data structure of strings * Ternary search, a computer science techniqu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

External Node
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent. These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes in a single straight line. Binary trees are a commonly used type, which constrain the number of children for each parent to exactly two. When the order of the children is specified, this data structure corresponds to an ordered tree in graph theory. A value or pointer to other data may be associated with every node in the tre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Internal Node
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, except for the ''root'' node, which has no parent. These constraints mean there are no cycles or "loops" (no node can be its own ancestor), and also that each child can be treated like the root node of its own subtree, making recursion a useful technique for tree traversal. In contrast to linear data structures, many trees cannot be represented by relationships between neighboring nodes in a single straight line. Binary trees are a commonly used type, which constrain the number of children for each parent to exactly two. When the order of the children is specified, this data structure corresponds to an ordered tree in graph theory. A value or pointer to other data may be associated with every node in the tree, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Null Pointer
In computing, a null pointer or null reference is a value saved for indicating that the pointer or reference does not refer to a valid object. Programs routinely use null pointers to represent conditions such as the end of a list of unknown length or the failure to perform some action; this use of null pointers can be compared to nullable types and to the ''Nothing'' value in an option type. A null pointer should not be confused with an uninitialized pointer: a null pointer is guaranteed to compare unequal to any pointer that points to a valid object. However, depending on the language and implementation, an uninitialized pointer may not have any such guarantee. It might compare equal to other, valid pointers; or it might compare equal to null pointers. It might do both at different times; or the comparison might be undefined behaviour. C In C, two null pointers of any type are guaranteed to compare equal. The preprocessor macro NULL is defined as an implementation-defined n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Search Tree
In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree. The time complexity of operations on the binary search tree is directly proportional to the height of the tree. Binary search trees allow binary search for fast lookup, addition, and removal of data items. Since the nodes in a BST are laid out so that each comparison skips about half of the remaining tree, the lookup performance is proportional to that of binary logarithm. BSTs were devised in the 1960s for the problem of efficient storage of labeled data and are attributed to Conway Berners-Lee and David Wheeler. The performance of a binary search tree is dependent on the order of insertion of the nodes into the tree since arbitrary insertions may lead to degeneracy; several variations of the bi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ternary Binary Tree
Ternary (from Latin ''ternarius'') or trinary is an adjective meaning "composed of three items". It can refer to: Mathematics and logic * Ternary numeral system, a base-3 counting system ** Balanced ternary, a positional numeral system, useful for comparison logic * Ternary logic, a logic system with the values ''true'', ''false'', and some other value * Ternary plot or ternary graph, a plot that shows the ratios of three proportions * Ternary relation, a finitary relation in which the number of places in the relation is three * Ternary operation, an operation that takes three parameters * Ternary function, a function that takes three arguments Computing * Ternary signal, a signal that can assume three significant values * Ternary computer, a computer using a ternary numeral system * Ternary tree, a tree data structure in computer science **Ternary search tree, a ternary (three-way) tree data structure of strings * Ternary search, a computer science technique for finding the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tree Of Primitive Pythagorean Triples
500px, Berggrens's tree of primitive Pythagorean triples. In mathematics, a tree of primitive Pythagorean triples is a data tree in which each node branches to three subsequent nodes with the infinite set of all nodes giving all (and only) primitive Pythagorean triples without duplication. A Pythagorean triple is a set of three positive integers ''a, b,'' and ''c'' having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation a^2+b^2=c^2; the triple is said to be primitive if and only if the greatest common divisor of ''a, b,'' and ''c'' is one. Primitive Pythagorean triple ''a, b,'' and ''c'' are also pairwise coprime. The set of all primitive Pythagorean triples has the structure of a rooted tree, specifically a ternary tree, in a natural way. This was first discovered by B. Berggren in 1934. F. J. M. Barning showed that when any of the three matrices : \begin A = \begin 1 & -2 & 2 \\ 2 & -1 & 2 \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]