Surgery Exact Sequence
   HOME
*





Surgery Exact Sequence
In the mathematical surgery theory the surgery exact sequence is the main technical tool to calculate the surgery structure set of a compact manifold in dimension >4. The surgery structure set \mathcal (X) of a compact n-dimensional manifold X is a pointed set which classifies n-dimensional manifolds within the homotopy type of X. The basic idea is that in order to calculate \mathcal (X) it is enough to understand the other terms in the sequence, which are usually easier to determine. These are on one hand the normal invariants which form Cohomology#Cohomology theories, generalized cohomology groups, and hence one can use standard tools of algebraic topology to calculate them at least in principle. On the other hand, there are the L-theory, L-groups which are defined algebraically in terms of quadratic forms or in terms of chain complexes with quadratic structure. A great deal is known about these groups. Another part of the sequence are the surgery obstruction maps from normal inv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surgery Theory
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold ''M'' of dimension n=p+q+1, could be described as removing an imbedded sphere of dimension ''p'' from ''M''. Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds. Surgery refers to cutting out parts of the manifold and replacing it with a part of another manifold, matching up along the cut or boundary. This is closely related to, but not identical with, handlebody decompositions. More technically, the idea is to start with a well-understood manifold ''M'' and perform surgery on it to produce a manifold ''M''′ having some desired property, in such a way th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simply-connected
In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the space) into any other such path while preserving the two endpoints in question. The fundamental group of a topological space is an indicator of the failure for the space to be simply connected: a path-connected topological space is simply connected if and only if its fundamental group is trivial. Definition and equivalent formulations A topological space X is called if it is path-connected and any loop in X defined by f : S^1 \to X can be contracted to a point: there exists a continuous map F : D^2 \to X such that F restricted to S^1 is f. Here, S^1 and D^2 denotes the unit circle and closed unit disk in the Euclidean plane respectively. An equivalent formulation is this: X is simply connected if and only if it is path-connected, and wheneve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Space
In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet ''at infinity''. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines. This definition of a projective space has the disadvantage of not being isotropic, having two different sorts of points, which must be considered separately in proofs. Therefore, other definitions are generally preferred. There are two classes of definitions. In synthetic geometry, ''point'' and ''line'' are primitive entities that are related by the incidence relation "a point is on a line" or "a line passes through a point", which is subject to the axioms of projective geometry. For some such set of axioms, the projective spaces that are defined have been shown to be equivalent to those resulting from the fol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Poincaré Conjecture
In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold which is a homotopy sphere a sphere. More precisely, one fixes a category of manifolds: topological (Top), piecewise linear (PL), or differentiable (Diff). Then the statement is :Every homotopy sphere (a closed ''n''-manifold which is homotopy equivalent to the ''n''-sphere) in the chosen category (i.e. topological manifolds, PL manifolds, or smooth manifolds) is isomorphic in the chosen category (i.e. homeomorphic, PL-isomorphic, or diffeomorphic) to the standard ''n''-sphere. The name derives from the Poincaré conjecture, which was made for (topological or PL) manifolds of dimension 3, where being a homotopy sphere is equivalent to being simply connected and closed. The generalized Poincaré conjecture is known to be true or false in a number of instances, due to the work of many distinguished topologists, including the Fields medal awardees John Milnor, Steve Smale, Micha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Sphere
In algebraic topology, a branch of mathematics, a ''homotopy sphere'' is an ''n''-manifold that is homotopy equivalent to the ''n''-sphere. It thus has the same homotopy groups and the same homology groups as the ''n''-sphere, and so every homotopy sphere is necessarily a homology sphere. The topological generalized Poincaré conjecture is that any ''n''-dimensional homotopy sphere is homeomorphic to the ''n''-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005. The resolution of the smooth Poincaré conjecture in dimensions 5 and larger implies that homotopy spheres in those dimensions are precisely exotic spheres. It is still an open question () whether or not there are non-trivial smooth homotopy spheres in dimension 4. References See also *Homology sphere *Homotopy groups of spheres *Poincaré conjecture In the mathematics, mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Frank Quinn (mathematician)
Frank Stringfellow Quinn, III (born 1946) is an American mathematician and professor of mathematics at Virginia Polytechnic Institute and State University, specializing in geometric topology. Contributions He contributed to the mathematical field of 4-manifolds, including a proof of the 4-dimensional annulus theorem. In surgery theory, he made several important contributions: the invention of the assembly map, that enables a functorial description of surgery in the topological category, with his thesis advisor, William Browder, the development of an early surgery theory for stratified spaces, and perhaps most importantly, he pioneered the use of controlled methods in geometric topology and in algebra. Among his important applications of "control" are his aforementioned proof of the 4-dimensional annulus theorem, his development of a flexible category of stratified spaces, and, in combination with work of Robert D. Edwards, a useful characterization of high-dimensional manifold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


S-cobordism
In geometric topology and differential topology, an (''n'' + 1)-dimensional cobordism ''W'' between ''n''-dimensional manifolds ''M'' and ''N'' is an ''h''-cobordism (the ''h'' stands for homotopy equivalence) if the inclusion maps : M \hookrightarrow W \quad\mbox\quad N \hookrightarrow W are homotopy equivalences. The ''h''-cobordism theorem gives sufficient conditions for an ''h''-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder ''M'' × , 1 Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds. The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the generalized Poincaré conjecture. Background Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases were ev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


H-cobordism
In geometric topology and differential topology, an (''n'' + 1)-dimensional cobordism ''W'' between ''n''-dimensional manifolds ''M'' and ''N'' is an ''h''-cobordism (the ''h'' stands for homotopy equivalence) if the inclusion maps : M \hookrightarrow W \quad\mbox\quad N \hookrightarrow W are homotopy equivalences. The ''h''-cobordism theorem gives sufficient conditions for an ''h''-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder ''M'' × , 1 Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds. The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the generalized Poincaré conjecture. Background Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases were e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Invariants
In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex ''X'' (more geometrically a Poincaré space), a normal map on ''X'' endows the space, roughly speaking, with some of the homotopy-theoretic global structure of a closed manifold. In particular, ''X'' has a good candidate for a stable normal bundle and a Thom collapse map, which is equivalent to there being a map from a manifold ''M'' to ''X'' matching the fundamental classes and preserving normal bundle information. If the dimension of ''X'' is \ge 5 there is then only the algebraic topology surgery obstruction due to C. T. C. Wall to ''X'' actually being homotopy equivalent to a closed manifold. Normal maps also apply to the study of the uniqueness of manifold structures within a homotopy type, which was pioneered by Sergei Novikov. The cobordism classes of normal maps on ''X'' are called normal invariants. Dependi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pontrjagin-Thom Construction
In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space. Construction of the Thom space One way to construct this space is as follows. Let :p: E \to B be a rank ''n'' real number, real vector bundle over the paracompact space ''B''. Then for each point ''b'' in ''B'', the Fiber (mathematics)#Fiber in naive set theory, fiber E_b is an n-dimensional real vector space. Choose an orthogonal structure on E, a smoothly varying inner product on the fibers; we can do this using partitions of unity. Let D(E) be the unit ball bundle with respect to our orthogonal structure, and let S(E) be the unit sphere bundle, then the Thom space T(E) is the quotient T(E) := D(E)/S(E) of topological spaces. T(E) is a pointed space with the image of S(E) in the quotient as basepoint. If ''B'' is compact, then T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let ''G'' be a group, written multiplicatively, and let ''R'' be a ring. The group ring of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]