Surfaces Of Class VII
   HOME
*





Surfaces Of Class VII
In mathematics, surfaces of class VII are non-algebraic complex surfaces studied by that have Kodaira dimension −∞ and first Betti number 1. Minimal surfaces of class VII (those with no rational curves with self-intersection −1) are called surfaces of class VII0. Every class VII surface is birational to a unique minimal class VII surface, and can be obtained from this minimal surface by blowing up points a finite number of times. The name "class VII" comes from , which divided minimal surfaces into 7 classes numbered I0 to VII0. However Kodaira's class VII0 did not have the condition that the Kodaira dimension is −∞, but instead had the condition that the geometric genus is 0. As a result, his class VII0 also included some other surfaces, such as secondary Kodaira surfaces, that are no longer considered to be class VII as they do not have Kodaira dimension −∞. The minimal surfaces of class VII are the class numbered "7" on the list of surfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Surface
Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each other * Complex (psychology), a core pattern of emotions etc. in the personal unconscious organized around a common theme such as power or status Complex may also refer to: Arts, entertainment and media * Complex (English band), formed in 1968, and their 1971 album ''Complex'' * Complex (band), a Japanese rock band * Complex (album), ''Complex'' (album), by Montaigne, 2019, and its title track * Complex (EP), ''Complex'' (EP), by Rifle Sport, 1985 * Complex (song), "Complex" (song), by Gary Numan, 1979 * Complex Networks, publisher of magazine ''Complex'', now online Biology * Protein–ligand complex, a complex of a protein bound with a ligand * Exosome complex, a multi-protein intracellular complex * Protein complex, a group of two or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kodaira Dimension
In algebraic geometry, the Kodaira dimension ''κ''(''X'') measures the size of the canonical ring, canonical model of a projective variety ''X''. Igor Shafarevich, in a seminar introduced an important numerical invariant of surfaces with the notation ''κ''. Shigeru Iitaka extended it and defined the Kodaira dimension for higher dimensional varieties (under the name of canonical dimension), and later named it after Kunihiko Kodaira. The plurigenera The canonical bundle of a smooth scheme, smooth algebraic variety ''X'' of dimension ''n'' over a field is the line bundle of ''n''-forms, :\,\!K_X = \bigwedge^n\Omega^1_X, which is the ''n''th exterior power of the cotangent bundle of ''X''. For an integer ''d'', the ''d''th tensor power of ''K''''X'' is again a line bundle. For ''d'' ≥ 0, the vector space of global sections ''H''0(''X'',''K''''X''''d'') has the remarkable property that it is a birational invariant of smooth projective varieties ''X''. That is, this vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Betti Number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite. The ''n''th Betti number represents the rank of the ''n''th homology group, denoted ''H''''n'', which tells us the maximum number of cuts that can be made before separating a surface into two pieces or 0-cycles, 1-cycles, etc. For example, if H_n(X) \cong 0 then b_n(X) = 0, if H_n(X) \cong \mathbb then b_n(X) = 1, if H_n(X) \cong \mathbb \oplus \mathbb then b_n(X) = 2, if H_n(X) \cong \mathbb \oplus \mathbb\oplus \mathbb then b_n(X) = 3, etc. Note that only the ranks of infinite groups are considered, so for example if H_n(X) \cong \mathbb^k \oplus \mathbb/(2) , where \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kodaira Surface
In mathematics, a Kodaira surface is a compact space, compact algebraic surface, complex surface of Kodaira dimension 0 and odd first Betti number. The concept is named after Kunihiko Kodaira. These are never algebraic, though they have non-constant meromorphic functions. They are usually divided into two subtypes: primary Kodaira surfaces with trivial canonical bundle, and secondary Kodaira surfaces which are quotients of these by finite groups of orders 2, 3, 4, or 6, and which have non-trivial canonical bundles. The secondary Kodaira surfaces have the same relation to primary ones that Enriques surfaces have to K3 surfaces, or bielliptic surfaces have to abelian surfaces. Invariants: If the surface is the quotient of a primary Kodaira surface by a group of order ''k'' = 1,2,3,4,6, then the plurigenera ''P''''n'' are 1 if ''n'' is divisible by ''k'' and 0 otherwise. Hodge diamond: Examples: Take a non-trivial line bundle over an elliptic curve, remove the zero sect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Plurigenera
In mathematics, the pluricanonical ring of an algebraic variety ''V'' (which is non-singular), or of a complex manifold, is the graded ring :R(V,K)=R(V,K_V) \, of sections of powers of the canonical bundle ''K''. Its ''n''th graded component (for n\geq 0) is: :R_n := H^0(V, K^n),\ that is, the space of sections of the ''n''-th tensor product ''K''''n'' of the canonical bundle ''K''. The 0th graded component R_0 is sections of the trivial bundle, and is one-dimensional as ''V'' is projective. The projective variety defined by this graded ring is called the canonical model of ''V'', and the dimension of the canonical model is called the Kodaira dimension of ''V''. One can define an analogous ring for any line bundle ''L'' over ''V''; the analogous dimension is called the Iitaka dimension. A line bundle is called big if the Iitaka dimension equals the dimension of the variety. Properties Birational invariance The canonical ring and therefore likewise the Kodaira dimension is a b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inoue Surface
In complex geometry, an Inoue surface is any of several complex surfaces of Kodaira class VII. They are named after Masahisa Inoue, who gave the first non-trivial examples of Kodaira class VII surfaces in 1974. The Inoue surfaces are not Kähler manifolds. Inoue surfaces with ''b''2 = 0 Inoue introduced three families of surfaces, ''S''0, ''S''+ and ''S''−, which are compact quotients of \Complex \times \mathbb (a product of a complex plane by a half-plane). These Inoue surfaces are solvmanifolds. They are obtained as quotients of \Complex \times \mathbb by a solvable discrete group which acts holomorphically on \Complex \times \mathbb. The solvmanifold surfaces constructed by Inoue all have second Betti number b_2=0. These surfaces are of Kodaira class VII, which means that they have b_1=1 and Kodaira dimension -\infty. It was proven by Bogomolov, Li– Yau and Teleman that any surface of class VII with b_2=0 is a Hopf surface or an Inoue-type solvmanifold. These surfa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inoue–Hirzebruch Surface
In mathematics, a Inoue–Hirzebruch surface is a complex surface with no meromorphic functions introduced by . They have Kodaira dimension κ = −∞, and are non-algebraic surfaces of class VII with positive second Betti number. studied some higher-dimensional analogues. See also *List of algebraic surfaces This is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Kodaira dimension −∞ Rational surfaces * Projective plane Qu ... References * * {{DEFAULTSORT:Inoue-Hirzebruch surface Complex surfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enoki Surface
In mathematics, an Enoki surface is compact complex surface with positive second Betti number that has a global spherical shell and a non-trivial divisor ''D'' with ''H''0(O(''D'')) ≠ 0 and (''D'', ''D'') = 0. constructed some examples. They are surfaces of class VII In mathematics, surfaces of class VII are non-algebraic complex surfaces studied by that have Kodaira dimension −∞ and first Betti number 1. Minimal surfaces of class VII (those with no rational curves with self-intersection −1) a ..., so are non-Kähler and have Kodaira dimension −∞. References * Complex surfaces {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kato Surface
In mathematics, a Kato surface is a compact complex surface with positive first Betti number that has a global spherical shell. showed that Kato surfaces have small analytic deformations that are the blowups of primary Hopf surfaces at a finite number of points. In particular they have an infinite cyclic fundamental group, and are never Kähler manifolds. Examples of Kato surfaces include Inoue-Hirzebruch surfaces and Enoki surface In mathematics, an Enoki surface is compact complex surface with positive second Betti number that has a global spherical shell and a non-trivial divisor ''D'' with ''H''0(O(''D'')) ≠ 0 and (''D'', ''D'') = 0. constru ...s. The global spherical shell conjecture claims that all class VII surfaces with positive second Betti number are Kato surfaces. References * *{{Citation , last1=Kato , first1=Masahide , editor1-last=Nagata , editor1-first=Masayoshi , editor1-link=Masayoshi Nagata , title=Proceedings of the In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hopf Surface
In complex geometry, a Hopf surface is a compact complex surface obtained as a quotient of the complex vector space (with zero deleted) \Complex^2\setminus \ by a free action of a discrete group. If this group is the integers the Hopf surface is called primary, otherwise it is called secondary. (Some authors use the term "Hopf surface" to mean "primary Hopf surface".) The first example was found by , with the discrete group isomorphic to the integers, with a generator acting on \Complex^2 by multiplication by 2; this was the first example of a compact complex surface with no Kähler metric. Higher-dimensional analogues of Hopf surfaces are called Hopf manifolds. Invariants Hopf surfaces are surfaces of class VII and in particular all have Kodaira dimension -\infty, and all their plurigenera vanish. The geometric genus is 0. The fundamental group has a normal central infinite cyclic subgroup of finite index. The Hodge diamond is In particular the first Betti number is 1 and the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

American Journal Of Mathematics
The ''American Journal of Mathematics'' is a bimonthly mathematics journal published by the Johns Hopkins University Press. History The ''American Journal of Mathematics'' is the oldest continuously published mathematical journal in the United States, established in 1878 at the Johns Hopkins University by James Joseph Sylvester, an English-born mathematician who also served as the journal's editor-in-chief from its inception through early 1884. Initially W. E. Story was associate editor in charge; he was replaced by Thomas Craig in 1880. For volume 7 Simon Newcomb became chief editor with Craig managing until 1894. Then with volume 16 it was "Edited by Thomas Craig with the Co-operation of Simon Newcomb" until 1898. Other notable mathematicians who have served as editors or editorial associates of the journal include Frank Morley, Oscar Zariski, Lars Ahlfors, Hermann Weyl, Wei-Liang Chow, S. S. Chern, André Weil, Harish-Chandra, Jean Dieudonné, Henri Cartan, Stephen S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inventiones Mathematicae
''Inventiones Mathematicae'' is a mathematical journal published monthly by Springer Science+Business Media. It was established in 1966 and is regarded as one of the most prestigious mathematics journals in the world. The current managing editors are Camillo De Lellis (Institute for Advanced Study, Princeton) and Jean-Benoît Bost (University of Paris-Sud Paris-Sud University (French: ''Université Paris-Sud''), also known as University of Paris — XI (or as Université d'Orsay before 1971), was a French research university distributed among several campuses in the southern suburbs of Paris, in ...). Abstracting and indexing The journal is abstracted and indexed in: References External links *{{Official website, https://www.springer.com/journal/222 Mathematics journals Publications established in 1966 English-language journals Springer Science+Business Media academic journals Monthly journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]