Kato Surface
   HOME
*





Kato Surface
In mathematics, a Kato surface is a compact complex surface with positive first Betti number that has a global spherical shell. showed that Kato surfaces have small analytic deformations that are the blowups of primary Hopf surfaces at a finite number of points. In particular they have an infinite cyclic fundamental group, and are never Kähler manifolds. Examples of Kato surfaces include Inoue-Hirzebruch surfaces and Enoki surface In mathematics, an Enoki surface is compact complex surface with positive second Betti number that has a global spherical shell and a non-trivial divisor ''D'' with ''H''0(O(''D'')) ≠ 0 and (''D'', ''D'') = 0. constru ...s. The global spherical shell conjecture claims that all class VII surfaces with positive second Betti number are Kato surfaces. References * *{{Citation , last1=Kato , first1=Masahide , editor1-last=Nagata , editor1-first=Masayoshi , editor1-link=Masayoshi Nagata , title=Proceedings of the In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Betti Number
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of ''n''-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they are all finite. The ''n''th Betti number represents the rank of the ''n''th homology group, denoted ''H''''n'', which tells us the maximum number of cuts that can be made before separating a surface into two pieces or 0-cycles, 1-cycles, etc. For example, if H_n(X) \cong 0 then b_n(X) = 0, if H_n(X) \cong \mathbb then b_n(X) = 1, if H_n(X) \cong \mathbb \oplus \mathbb then b_n(X) = 2, if H_n(X) \cong \mathbb \oplus \mathbb\oplus \mathbb then b_n(X) = 3, etc. Note that only the ranks of infinite groups are considered, so for example if H_n(X) \cong \mathbb^k \oplus \mathbb/(2) , where \mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Spherical Shell
In mathematics, surfaces of class VII are non-algebraic complex surfaces studied by that have Kodaira dimension −∞ and first Betti number 1. Minimal surfaces of class VII (those with no rational curves with self-intersection −1) are called surfaces of class VII0. Every class VII surface is birational to a unique minimal class VII surface, and can be obtained from this minimal surface by blowing up points a finite number of times. The name "class VII" comes from , which divided minimal surfaces into 7 classes numbered I0 to VII0. However Kodaira's class VII0 did not have the condition that the Kodaira dimension is −∞, but instead had the condition that the geometric genus is 0. As a result, his class VII0 also included some other surfaces, such as secondary Kodaira surfaces, that are no longer considered to be class VII as they do not have Kodaira dimension −∞. The minimal surfaces of class VII are the class numbered "7" on the list of surfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primary Hopf Surface
In complex geometry, a Hopf surface is a compact complex surface obtained as a quotient of the complex vector space (with zero deleted) \Complex^2\setminus \ by a free action of a discrete group. If this group is the integers the Hopf surface is called primary, otherwise it is called secondary. (Some authors use the term "Hopf surface" to mean "primary Hopf surface".) The first example was found by , with the discrete group isomorphic to the integers, with a generator acting on \Complex^2 by multiplication by 2; this was the first example of a compact complex surface with no Kähler metric. Higher-dimensional analogues of Hopf surfaces are called Hopf manifolds. Invariants Hopf surfaces are surfaces of class VII and in particular all have Kodaira dimension -\infty, and all their plurigenera vanish. The geometric genus is 0. The fundamental group has a normal central infinite cyclic subgroup of finite index. The Hodge diamond is In particular the first Betti number is 1 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breakin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kähler Manifold
In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics. Every smooth complex projective variety is a Kähler manifold. Hodge theory is a central part of algebraic geometry, proved using Kähler metrics. Definitions Since Kähler manifolds are equipped with several compatible structures, they can be described from different points of view: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Enoki Surface
In mathematics, an Enoki surface is compact complex surface with positive second Betti number that has a global spherical shell and a non-trivial divisor ''D'' with ''H''0(O(''D'')) ≠ 0 and (''D'', ''D'') = 0. constructed some examples. They are surfaces of class VII In mathematics, surfaces of class VII are non-algebraic complex surfaces studied by that have Kodaira dimension −∞ and first Betti number 1. Minimal surfaces of class VII (those with no rational curves with self-intersection −1) a ..., so are non-Kähler and have Kodaira dimension −∞. References * Complex surfaces {{geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Spherical Shell Conjecture
In mathematics, surfaces of class VII are non-algebraic complex surfaces studied by that have Kodaira dimension −∞ and first Betti number 1. Minimal surfaces of class VII (those with no rational curves with self-intersection −1) are called surfaces of class VII0. Every class VII surface is birational to a unique minimal class VII surface, and can be obtained from this minimal surface by blowing up points a finite number of times. The name "class VII" comes from , which divided minimal surfaces into 7 classes numbered I0 to VII0. However Kodaira's class VII0 did not have the condition that the Kodaira dimension is −∞, but instead had the condition that the geometric genus is 0. As a result, his class VII0 also included some other surfaces, such as secondary Kodaira surfaces, that are no longer considered to be class VII as they do not have Kodaira dimension −∞. The minimal surfaces of class VII are the class numbered "7" on the list of surfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Class VII Surface
In mathematics, surfaces of class VII are non-algebraic complex surfaces studied by that have Kodaira dimension −∞ and first Betti number 1. Minimal surfaces of class VII (those with no rational curves with self-intersection −1) are called surfaces of class VII0. Every class VII surface is birational to a unique minimal class VII surface, and can be obtained from this minimal surface by blowing up points a finite number of times. The name "class VII" comes from , which divided minimal surfaces into 7 classes numbered I0 to VII0. However Kodaira's class VII0 did not have the condition that the Kodaira dimension is −∞, but instead had the condition that the geometric genus is 0. As a result, his class VII0 also included some other surfaces, such as secondary Kodaira surfaces, that are no longer considered to be class VII as they do not have Kodaira dimension −∞. The minimal surfaces of class VII are the class numbered "7" on the list of surfaces ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]