Summability
   HOME





Summability
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit. If a series converges, the individual terms of the series must approach zero. Thus any series in which the individual terms do not approach zero diverges. However, convergence is a stronger condition: not all series whose terms approach zero converge. A counterexample is the harmonic series :1 + \frac + \frac + \frac + \frac + \cdots =\sum_^\infty\frac. The divergence of the harmonic series was proven by the medieval mathematician Nicole Oresme. In specialized mathematical contexts, values can be objectively assigned to certain series whose sequences of partial sums diverge, in order to make meaning of the divergence of the series. A ''summability method'' or ''summation method'' is a partial function from the set of series to values. For example, Cesàro summation assigns Grandi's divergent ser ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1 − 2 + 3 − 4 + ⋯
In mathematics, 1 − 2 + 3 − 4 + ··· is an Series (mathematics), infinite series whose terms are the successive positive integers, given alternating series, alternating signs. Using summation, sigma summation notation the sum of the first ''m'' terms of the series can be expressed as \sum_^m n(-1)^. The infinite series divergent series, diverges, meaning that its sequence of partial sums, , does not tend towards any finite Limit of a sequence, limit. Nonetheless, in the mid-18th century, Leonhard Euler wrote what he admitted to be a List of paradoxes#Mathematics, paradoxical equation: 1-2+3-4+\cdots=\frac. A Rigour#Mathematical rigour, rigorous explanation of this equation would not arrive until much later. Starting in 1890, Ernesto Cesàro, Émile Borel and others investigated well-defined methods to assign generalized sums to divergent series—including new interpretations of Euler's attempts. Many of these summability methods easily assign to a "value" of . Cesàro su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infinite Series
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance. Among the Ancient Greeks, the idea that a potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cesàro Summation
In mathematical analysis, Cesàro summation (also known as the Cesàro mean or Cesàro limit) assigns values to some Series (mathematics), infinite sums that are Divergent series, not necessarily convergent in the usual sense. The Cesàro sum is defined as the limit, as ''n'' tends to infinity, of the sequence of arithmetic means of the first ''n'' partial sums of the series. This special case of a matrix summability method is named for the Italian analyst Ernesto Cesàro (1859–1906). The term ''summation'' can be misleading, as some statements and proofs regarding Cesàro summation can be said to implicate the Eilenberg–Mazur swindle. For example, it is commonly applied to Grandi's series with the conclusion that the ''sum'' of that series is 1/2. Definition Let (a_n)_^\infty be a sequence, and let :s_k = a_1 + \cdots + a_k= \sum_^k a_n be its th partial sum. The sequence is called Cesàro summable, with Cesàro sum , if, as tends to infinity, the arithmetic mean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1 − 1 + 2 − 6 + 24 − 120 + ⋯
In mathematics, :\sum_^\infty (-1)^k k! is a divergent series, first considered by Euler, that sums the factorials of the natural numbers with alternating signs. Despite being divergent, it can be assigned a value of approximately 0.596347 by Borel summation. Euler and Borel summation This series was first considered by Euler, who applied summability methods to assign a finite value to the series. The series is a sum of factorials that are alternately added or subtracted. One way to assign a value to this divergent series is by using Borel summation, where one formally writes :\sum_^\infty (-1)^k k! = \sum_^\infty (-1)^k \int_0^\infty x^k e^ \, dx. If summation and integration are interchanged (ignoring that neither side converges), one obtains: :\sum_^\infty (-1)^k k! = \int_0^\infty \left sum_^\infty (-x)^k \right^ \, dx. The summation in the square brackets converges when , x, < 1, and for those values equals \tfrac. The

picture info

Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real analysis), pioneered the field complex analysis, and the study of permutation groups in abstract algebra. Cauchy also contributed to a number of topics in mathematical physics, notably continuum mechanics. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: : "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific worker; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathematical physics. Biography Youth and education Cauchy was the son of Lou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Henri Poincaré
Jules Henri Poincaré (, ; ; 29 April 185417 July 1912) was a French mathematician, Theoretical physics, theoretical physicist, engineer, and philosophy of science, philosopher of science. He is often described as a polymath, and in mathematics as "The Last Universalist", since he excelled in all fields of the discipline as it existed during his lifetime. He has further been called "the Carl Friedrich Gauss, Gauss of History of mathematics, modern mathematics". Due to his success in science, along with his influence and philosophy, he has been called "the philosopher par excellence of modern science". As a mathematician and physicist, he made many original fundamental contributions to Pure mathematics, pure and applied mathematics, mathematical physics, and celestial mechanics. In his research on the three-body problem, Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of modern chaos theory. Poincaré is regarded as the cr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ernesto Cesàro
Ernesto Cesàro (12 March 1859 – 12 September 1906) was an Italian mathematician who worked in the field of differential geometry. He wrote a book, ''Lezioni di geometria intrinseca'' (Naples, 1890), on this topic, in which he also describes fractal, space-filling curves, partly covered by the larger class of de Rham curves, but are still known today in his honor as Cesàro curves. He is known also for his 'averaging' method for the 'Cesàro-summation' of divergent series, known as the Cesàro mean. Biography After a rather disappointing start of his academic career and a journey through Europe—with the most important stop at Liège, where his older brother Giuseppe Raimondo Pio Cesàro was teaching mineralogy at the local university—Ernesto Cesàro graduated from the University of Rome in 1887, while he was already part of the Royal Science Society of Belgium for the numerous works that he had already published. The following year, he obtained a mathematics chair at t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ferdinand Georg Frobenius
Ferdinand Georg Frobenius (26 October 1849 – 3 August 1917) was a German mathematician, best known for his contributions to the theory of elliptic functions, differential equations, number theory, and to group theory. He is known for the famous determinantal identities, known as Frobenius–Stickelberger formulae, governing elliptic functions, and for developing the theory of biquadratic forms. He was also the first to introduce the notion of rational approximations of functions (nowadays known as Padé approximants), and gave the first full proof for the Cayley–Hamilton theorem. He also lent his name to certain differential-geometric objects in modern mathematical physics, known as Frobenius manifolds. Biography Ferdinand Georg Frobenius was born on 26 October 1849 in Charlottenburg, a suburb of Berlin, from parents Christian Ferdinand Frobenius, a Protestant parson, and Christine Elizabeth Friedrich. He entered the Joachimsthal Gymnasium in 1860 when he was nearly el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leonhard Euler
Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential discoveries in many other branches of mathematics, such as analytic number theory, complex analysis, and infinitesimal calculus. He also introduced much of modern mathematical terminology and Mathematical notation, notation, including the notion of a mathematical function. He is known for his work in mechanics, fluid dynamics, optics, astronomy, and music theory. Euler has been called a "universal genius" who "was fully equipped with almost unlimited powers of imagination, intellectual gifts and extraordinary memory". He spent most of his adult life in Saint Petersburg, Russia, and in Berlin, then the capital of Kingdom of Prussia, Prussia. Euler is credited for popularizing the Greek letter \pi (lowercase Pi (letter), pi) to denote Pi, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1 + 2 + 4 + 8 + ⋯
In mathematics, is the infinite series whose terms are the successive powers of two. As a geometric series, it is characterized by its first term, 1, and its common ratio, 2. As a series of real numbers it diverges to infinity, so in the usual sense it has no sum. However, it can be manipulated to yield a number of mathematically interesting results. For example, many summation methods are used in mathematics to assign numerical values even to divergent series. In particular, the Ramanujan summation of this series is −1, which is the limit of the series using the 2-adic metric. Summation The partial sum of the first n terms of 1 + 2 + 4 + 8 + \cdots is \sum_^ 2^k = 2^0+2^1 + \cdots + 2^ = 2^n - 1. Since the sequence 1, 3, 7, 15, \ldots of these partial sums diverges to infinity, so does the series. Therefore, any totally regular summation method gives a sum of infinity, including the Cesàro sum and Abel sum. On the other hand, there is at least one generally useful ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]