Stratified Space
   HOME
*





Stratified Space
In mathematics, especially in topology, a stratified space is a topological space that admits or is equipped with a Stratification (mathematics)#In topology, stratification, a decomposition into subspaces, which are nice in some sense (e.g., smooth or flat). A basic example is a subset of a smooth manifold that admits a Whitney stratification. But there is also an abstract stratified space such as a Thom–Mather stratified space. On a stratified space, a constructible sheaf can be defined as a sheaf that is locally constant sheaf, locally constant on each stratum. Among the several ideals, Grothendieck's ''Esquisse d’un programme'' considers (or proposes) a stratified space with what he calls the tame topology. A stratified space in the sense of Mather Mather gives the following definition of a stratified space. A ''prestratification'' on a topological space ''X'' is a partition of ''X'' into subsets (called strata) such that (a) each stratum is locally closed, (b) it is loca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Germ
In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions (or maps) and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed (the functions in question need not even be continuous); it is however necessary that the space on/in which the object is defined is a topological space, in order that the word ''local'' has some meaning. Name The name is derived from ''cereal germ'' in a continuation of the sheaf metaphor, as a germ is (locally) the "heart" of a function, as it is for a grain. Formal definition Basic definition Given a point ''x'' of a topological space ''X'', and two maps f, g: X \to Y (where ''Y'' is any set), then f and g define the same germ at ''x'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harder–Narasimhan Stratification
In algebraic geometry and complex geometry, the Harder–Narasimhan stratification is any of a stratification of the moduli stack of principal ''G''-bundles by locally closed substacks in terms of "loci of instabilities". In the original form due to Harder and Narasimhan, ''G'' was the general linear group; i.e., the moduli stack was the moduli stack of vector bundles, but, today, the term refers to any of generalizations. The scheme-theoretic version is due to Shatz and so the term "Shatz stratification" is also used synonymously. The general case is due to Behrend.http://www.math.harvard.edu/~lurie/282ynotes/LectureIII-Cohomology.pdf References * Further reading * Nitin NitsureSchematic Harder-Narasimhan Stratification {{algebraic-geometry-stub Algebraic geometry Stratifications ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Stratified Morse Theory
In mathematics, stratified Morse theory is an analogue to Morse theory for general stratified spaces, originally developed by Mark Goresky and Robert MacPherson. The main point of the theory is to consider functions f : M \to \mathbb R and consider how the stratified space f^(-\infty,c] changes as the real number c \in \mathbb R changes. Morse theory of stratified spaces has uses everywhere from pure mathematics topics such as braid groups and Lawrence–Krammer representation, representations to robot motion planning and potential theory. A popular application in pure mathematics is Morse theory on manifolds with boundary, and manifolds with corners. See also * Digital Morse theory * Discrete Morse theory * Level-set method Level-set methods (LSM) are a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes. The advantage of the level-set model is that one can perform numerical computations involving curves and surfaces o ... ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Perverse Sheaf
The mathematical term perverse sheaves refers to a certain abelian category associated to a topological space ''X'', which may be a real or complex manifold, or a more general topologically stratified space, usually singular. This concept was introduced in the thesis of Zoghman Mebkhout, gaining more popularity after the (independent) work of Joseph Bernstein, Alexander Beilinson, and Pierre Deligne (1982) as a formalisation of the Riemann-Hilbert correspondence, which related the topology of singular spaces (intersection homology of Mark Goresky and Robert MacPherson) and the algebraic theory of differential equations (microlocal calculus and holonomic D-modules of Joseph Bernstein, Masaki Kashiwara and Takahiro Kawai). It was clear from the outset that perverse sheaves are fundamental mathematical objects at the crossroads of algebraic geometry, topology, analysis and differential equations. They also play an important role in number theory, algebra, and representation theory. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equisingularity
In algebraic geometry, an equisingularity is, roughly, a family of singularities that are not non-equivalent and is an important notion in singularity theory. There is no universal definition of equisingularity but Zariki's equisingularity is the most famous one. Zariski's equisingualrity, introduced in 1971 under the name " algebro-geometric equisingularity", gives a stratification that is different from the usual Whitney stratification on a real or complex algebraic variety. See also *stratified space In mathematics, especially in topology, a stratified space is a topological space that admits or is equipped with a stratification, a decomposition into subspaces, which are nice in some sense (e.g., smooth or flat). A basic example is a subset o ... References Further reading *https://mathoverflow.net/questions/299314/a-general-definition-of-an-equisingular-family-of-singular-varieties algebraic geometry {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension (mathematics), dimension, including the three-dimensional space and the ''Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient History of geometry#Greek geometry, Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the Greek mathematics, ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of ''mathematical proof, proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''postulates'', which either were considered as eviden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Open Set
In mathematics, open sets are a generalization of open intervals in the real line. In a metric space (a set along with a distance defined between any two points), open sets are the sets that, with every point , contain all points that are sufficiently near to (that is, all points whose distance to is less than some value depending on ). More generally, one defines open sets as the members of a given collection of subsets of a given set, a collection that has the property of containing every union of its members, every finite intersection of its members, the empty set, and the whole set itself. A set in which such a collection is given is called a topological space, and the collection is called a topology. These conditions are very loose, and allow enormous flexibility in the choice of open sets. For example, ''every'' subset can be open (the discrete topology), or no set can be open except the space itself and the empty set (the indiscrete topology). In practice, however, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Locally Closed
In topology, a branch of mathematics, a subset E of a topological space X is said to be locally closed if any of the following equivalent conditions are satisfied: * E is the intersection of an open set and a closed set in X. * For each point x\in E, there is a neighborhood U of x such that E \cap U is closed in U. * E is an open subset of its closure \overline. * The set \overline\setminus E is closed in X. * E is the difference of two closed sets in X. * E is the difference of two open sets in X. The second condition justifies the terminology ''locally closed'' and is Bourbaki's definition of locally closed. To see the second condition implies the third, use the facts that for subsets A \subseteq B, A is closed in B if and only if A = \overline \cap B and that for a subset E and an open subset U, \overline \cap U = \overline \cap U. Examples The interval (0, 1] = (0, 2) \cap , 1/math> is a locally closed subset of \Reals. For another example, consider the relative interior D of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stratification (mathematics)
Stratification has several usages in mathematics. In mathematical logic In mathematical logic, stratification is any consistent assignment of numbers to Predicate (logic), predicate symbols guaranteeing that a unique formal Interpretation (logic), interpretation of a logical theory exists. Specifically, we say that a set of Clause (logic), clauses of the form Q_1 \wedge \dots \wedge Q_n \wedge \neg Q_ \wedge \dots \wedge \neg Q_ \rightarrow P is stratified if and only if there is a stratification assignment S that fulfills the following conditions: # If a predicate P is positively derived from a predicate Q (i.e., P is the head of a rule, and Q occurs positively in the body of the same rule), then the stratification number of P must be greater than or equal to the stratification number of Q, in short S(P) \geq S(Q). # If a predicate P is derived from a negated predicate Q (i.e., P is the head of a rule, and Q occurs negatively in the body of the same rule), then the stratification ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tame Topology
In mathematics, a tame topology is a hypothetical topology proposed by Alexander Grothendieck in his research program ''Esquisse d’un programme'' under the French name ''topologie modérée'' (moderate topology). It is a topology in which the theory of dévissage can be applied to stratified structures such as semialgebraic or semianalytic sets. Some authors consider an o-minimal structure to be a candidate for realizing tame topology in the real case. Some other authors have claimed that their theory of conically smooth stratified spaces can achieve tame topology. See also *Thom's first isotopy lemma In mathematics, especially in differential topology, Thom's first isotopy lemma states: given a smooth map f : M \to N between smooth manifolds and S \subset M a closed Whitney stratified subset, if f, _S is proper and f, _A is a submersion for eac ... References * External links *https://ncatlab.org/nlab/show/tame+topology Algebraic analysis Geometry education Mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Esquisse D’un Programme
"Esquisse d'un Programme" (Sketch of a Programme) is a famous proposal for long-term mathematical research made by the German-born, French mathematician Alexander Grothendieck in 1984. He pursued the sequence of logically linked ideas in his important project proposal from 1984 until 1988, but his proposed research continues to date to be of major interest in several branches of advanced mathematics. Grothendieck's vision provides inspiration today for several developments in mathematics such as the extension and generalization of Galois theory, which is currently being extended based on his original proposal. Brief history Submitted in 1984, the ''Esquisse d'un Programme'' was a proposal submitted by Alexander Grothendieck for a position at the Centre National de la Recherche Scientifique. The proposal was not successful, but Grothendieck obtained a special position where, while keeping his affiliation at the University of Montpellier, he was paid by the CNRS and released of his t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]