Stabilizer Formalism
   HOME
*





Stabilizer Formalism
The theory of quantum error correction plays a prominent role in the practical realization and engineering of quantum computing and quantum communication devices. The first quantum error-correcting codes are strikingly similar to classical block codes in their operation and performance. Quantum error-correcting codes restore a noisy, decohered quantum state to a pure quantum state. A stabilizer quantum error-correcting code appends ancilla qubits to qubits that we want to protect. A unitary encoding circuit rotates the global state into a subspace of a larger Hilbert space. This highly entangled, encoded state corrects for local noisy errors. A quantum error-correcting code makes quantum computation and quantum communication practical by providing a way for a sender and receiver to simulate a noiseless qubit channel given a noisy qubit channel whose noise conforms to a particular error model. The stabilizer theory of quantum error correction allows one to import some cl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Error Correction
Quantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. Classical error correction employs redundancy. The simplest albeit inefficient approach is the repetition code. The idea is to store the information multiple times, and—if these copies are later found to disagree—take a majority vote; e.g. suppose we copy a bit in the one state three times. Suppose further that a noisy error corrupts the three-bit state so that one of the copied bits is equal to zero but the other two are equal to one. Assuming that noisy errors are independent and occur with some sufficiently low probability ''p'', it is most likely that the error is a single-bit error and the tran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenvalues
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Set
] In mathematics, a point ''x'' is called an isolated point of a subset ''S'' (in a topological space ''X'') if ''x'' is an element of ''S'' and there exists a neighborhood of ''x'' which does not contain any other points of ''S''. This is equivalent to saying that the singleton is an open set in the topological space ''S'' (considered as a subspace of ''X''). Another equivalent formulation is: an element ''x'' of ''S'' is an isolated point of ''S'' if and only if it is not a limit point of ''S''. If the space ''X'' is a metric space, for example a Euclidean space, then an element ''x'' of ''S'' is an isolated point of ''S'' if there exists an open ball around ''x'' which contains only finitely many elements of ''S''. Related notions A set that is made up only of isolated points is called a discrete set (see also discrete space). Any discrete subset ''S'' of Euclidean space must be countable, since the isolation of each of its points together with the fact that rationals are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Block Code
In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of ''all'' block codes in a unified way. Such limitations often take the form of ''bounds'' that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors. Examples of block codes are Reed–Solomon codes, Hamming codes, Hadamard codes, Expander codes, Golay codes, and Reed–Muller codes. These examples also belong to the class of linear codes, and hence they are called linear block codes. More particularly, these codes are known as algebraic block codes, or cyclic block codes, because they can be generated using boolean polynomia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parity Check Matrix
In coding theory, a parity-check matrix of a linear block code ''C'' is a matrix which describes the linear relations that the components of a codeword must satisfy. It can be used to decide whether a particular vector is a codeword and is also used in decoding algorithms. Definition Formally, a parity check matrix ''H'' of a linear code ''C'' is a generator matrix of the dual code, ''C''⊥. This means that a codeword c is in ''C ''if and only if the matrix-vector product (some authors would write this in an equivalent form, c''H''⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. That is, they show how linear combinations of certain digits (components) of each codeword equal zero. For example, the parity check matrix :H = \left \begin 0&0&1&1\\ 1&1&0&0 \end \right, compactly represents the parity check equations, :\begin c_3 + c_4 &= 0 \\ c_1 + c_2 &= 0 \end, that must be satisfied for the vector (c_1, c_2, c_3, c_4) to be a co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum State
In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces. Pure states are also known as state vectors or wave functions, the latter term applying particularly when they are represented as functions of position or momentum. For example, when dealing with the energy spectrum of the electron in a hydrogen at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Representation (mathematics)
In mathematics, a representation is a very general relationship that expresses similarities (or equivalences) between mathematical objects or structures. Roughly speaking, a collection ''Y'' of mathematical objects may be said to ''represent'' another collection ''X'' of objects, provided that the properties and relationships existing among the representing objects ''yi'' conform, in some consistent way, to those existing among the corresponding represented objects ''xi''. More specifically, given a set ''Π'' of properties and relations, a ''Π''-representation of some structure ''X'' is a structure ''Y'' that is the image of ''X'' under a homomorphism that preserves ''Π''. The label ''representation'' is sometimes also applied to the homomorphism itself (such as group homomorphism in group theory). Representation theory Perhaps the most well-developed example of this general notion is the subfield of abstract algebra called representation theory, which studies the representing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eigenspace
In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted by \lambda, is the factor by which the eigenvector is scaled. Geometrically, an eigenvector, corresponding to a real nonzero eigenvalue, points in a direction in which it is stretched by the transformation and the eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, the direction is reversed. Loosely speaking, in a multidimensional vector space, the eigenvector is not rotated. Formal definition If is a linear transformation from a vector space over a field into itself and is a nonzero vector in , then is an eigenvector of if is a scalar multiple of . This can be written as T(\mathbf) = \lambda \mathbf, where is a scalar in , known as the eigenvalue, characteristic value, or characteristic root ass ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgroup
In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup of ''G'' if the restriction of ∗ to is a group operation on ''H''. This is often denoted , read as "''H'' is a subgroup of ''G''". The trivial subgroup of any group is the subgroup consisting of just the identity element. A proper subgroup of a group ''G'' is a subgroup ''H'' which is a proper subset of ''G'' (that is, ). This is often represented notationally by , read as "''H'' is a proper subgroup of ''G''". Some authors also exclude the trivial group from being proper (that is, ). If ''H'' is a subgroup of ''G'', then ''G'' is sometimes called an overgroup of ''H''. The same definitions apply more generally when ''G'' is an arbitrary semigroup, but this article will only deal with subgroups of groups. Subgroup tests Suppose th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantum Register
In quantum computing, a quantum register is a system comprising multiple qubits. It is the quantum analogue of the classical processor register. Quantum computers perform calculations by manipulating qubits within a quantum register. Definition It is usually assumed that the register consists of qubits. It is also generally assumed that registers are not density matrices, but that they are pure, although the definition of "register" can be extended to density matrices. An n size quantum register is a quantum system comprising n pure qubits. The Hilbert space, \mathcal, in which the data is stored in a quantum register is given by \mathcal = \mathcal\otimes\mathcal\otimes\ldots\otimes\mathcal where \otimes is the tensor product. The number of dimensions of the Hilbert spaces depend on what kind of quantum systems the register is composed of. Qubits are 2-dimensional complex spaces (\mathbb^2), while qutrits are 3-dimensional complex spaces (\mathbb^3), et.c. For a register ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pauli Operator
In mathematical physics and mathematics, the Pauli matrices are a set of three complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (), they are occasionally denoted by tau () when used in connection with isospin symmetries. \begin \sigma_1 = \sigma_\mathrm &= \begin 0&1\\ 1&0 \end \\ \sigma_2 = \sigma_\mathrm &= \begin 0& -i \\ i&0 \end \\ \sigma_3 = \sigma_\mathrm &= \begin 1&0\\ 0&-1 \end \\ \end These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation which takes into account the interaction of the spin of a particle with an external electromagnetic field. They also represent the interaction states of two polarization filters for horizontal/vertical polarization, 45 degree polarization (right/left), and circular polarization (right/left). Each Pauli matrix is Hermitian, and together with the id ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]