Simple Semigroup
   HOME
*





Simple Semigroup
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ''ab'' = ''ba'' for all elements ''a'' and ''b'' in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality. Members of the class of Brandt semigroups are required to satisfy not just one condition but a set of additional properties. A large collection of special classes of semigroups have been defined though not all of them have been studied equally intensively. In the algebraic theory of semigroups, in constructing special classes, attention is focused only on those properties, restrictions and conditions which can be expressed in terms of the binary operations in the se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partial Order
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', or ''x'' and ''y'' are ''inco ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Band (mathematics)
In mathematics, a band (also called idempotent semigroup) is a semigroup in which every element is idempotent (in other words equal to its own square). Bands were first studied and named by ; the lattice of varieties of bands was described independently in the early 1970s by Biryukov, Fennemore and Gerhard. Semilattices, left-zero bands, right-zero bands, rectangular bands, normal bands, left-regular bands, right-regular bands and regular bands, specific subclasses of bands that lie near the bottom of this lattice, are of particular interest and are briefly described below. Varieties of bands A class of bands forms a variety if it is closed under formation of subsemigroups, homomorphic images and direct product. Each variety of bands can be defined by a single defining identity. Semilattices Semilattices are exactly commutative bands; that is, they are the bands satisfying the equation * for all and . Bands induce a preorder that may be defined as x \leq y if and only ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for au ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trivial Semigroup
In mathematics, a trivial semigroup (a semigroup with one element) is a semigroup for which the cardinality of the underlying set is one. The number of distinct nonisomorphic semigroups with one element is one. If ''S'' = is a semigroup with one element, then the Cayley table of ''S'' is : The only element in ''S'' is the zero element 0 of ''S'' and is also the identity element 1 of ''S''. However not all semigroup theorists consider the unique element in a semigroup with one element as the zero element of the semigroup. They define zero elements only in semigroups having at least two elements. In spite of its extreme triviality, the semigroup with one element is important in many situations. It is the starting point for understanding the structure of semigroups. It serves as a counterexample in illuminating many situations. For example, the semigroup with one element is the only semigroup in which 0 = 1, that is, the zero element and the identity element are equal. Furth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Empty Semigroup
In mathematics, a semigroup with no elements (the empty semigroup) is a semigroup in which the underlying set is the empty set. Many authors do not admit the existence of such a semigroup. For them a semigroup is by definition a ''non-empty'' set together with an associative binary operation. However not all authors insist on the underlying set of a semigroup being non-empty.P. A. Grillet (1995). ''Semigroups''. CRC Press. pp. 3–4 One can logically define a semigroup in which the underlying set ''S'' is empty. The binary operation in the semigroup is the empty function from to ''S''. This operation vacuously satisfies the closure and associativity axioms of a semigroup. Not excluding the empty semigroup simplifies certain results on semigroups. For example, the result that the intersection of two subsemigroups of a semigroup ''T'' is a subsemigroup of ''T'' becomes valid even when the intersection is empty. When a semigroup is defined to have additional structure, the is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Finite Set
In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the ''cardinality (or the cardinal number)'' of the set. A set that is not a finite set is called an '' infinite set''. For example, the set of all positive integers is infinite: :\. Finite sets are particularly important in combinatorics, the mathematical study of counting. Many arguments involving finite sets rely on the pigeonhole principle, which states that there cannot exist an injective function from a larger finite set to a smaller finite set. Definition and terminology Formally, a set is called finite if there exists a bijection :f\colon S\to\ for some natural number . The number is the set's cardinality, denoted as . The empty set o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variety (universal Algebra)
In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called ''finitary algebraic categories''. A ''covariety'' is the class of all coalgebraic structures of a given signature. Terminology A variety of algebras should not be confused with an algebraic variety, which means a set of solutions to a system of polynomial equations. They are formally quite distinct and their theories have little in common. The term "variety of algebras" re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Variety Of Finite Semigroups
In mathematics, and more precisely in semigroup theory, a variety of finite semigroups is a class of semigroups having some nice algebraic properties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite monoids, varieties of finite ordered semigroups and varieties of finite ordered monoids are defined similarly. This notion is very similar to the general notion of variety in universal algebra. Definition Two equivalent definitions are now given. Algebraic definition A variety ''V'' of finite (ordered) semigroups is a class of finite (ordered) semigroups that: *is closed under division. *is closed under taking finite Cartesian products. The first condition is equivalent to stating that ''V'' is closed under taking subsemigroups and under taking quotients. The second property implies that the empty product—that is, the trivial semigroup of one element—belongs to each variety. Hence a variety is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Green's Relations
In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'" (Howie 2002). The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility. Instead of working directly with a semigroup ''S'', it is convenient to define Green's relations over the monoid ''S''1. (''S''1 is "''S'' with an identity adjoined if necessary"; if ''S'' is not already a monoid, a new element is adjoined and defined to be an identity.) This ensures that principal ideals generated by so ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Regular Semigroup
In mathematics, a regular semigroup is a semigroup ''S'' in which every element is regular, i.e., for each element ''a'' in ''S'' there exists an element ''x'' in ''S'' such that . Regular semigroups are one of the most-studied classes of semigroups, and their structure is particularly amenable to study via Green's relations. History Regular semigroups were introduced by J. A. Green in his influential 1951 paper "On the structure of semigroups"; this was also the paper in which Green's relations were introduced. The concept of ''regularity'' in a semigroup was adapted from an analogous condition for rings, already considered by John von Neumann. It was Green's study of regular semigroups which led him to define his celebrated relations. According to a footnote in Green 1951, the suggestion that the notion of regularity be applied to semigroups was first made by David Rees. The term inversive semigroup (French: demi-groupe inversif) was historically used as synonym in the pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]