Semi-empirical Quantum Chemistry Methods
   HOME
*





Semi-empirical Quantum Chemistry Methods
Semi-empirical quantum chemistry methods are based on the Hartree–Fock formalism, but make many approximations and obtain some parameters from empirical data. They are very important in computational chemistry for treating large molecules where the full Hartree–Fock method without the approximations is too expensive. The use of empirical parameters appears to allow some inclusion of electron correlation effects into the methods. Within the framework of Hartree–Fock calculations, some pieces of information (such as two-electron integrals) are sometimes approximated or completely omitted. In order to correct for this loss, semi-empirical methods are parametrized, that is their results are fitted by a set of parameters, normally in such a way as to produce results that best agree with experimental data, but sometimes to agree with ''ab initio'' results. Type of simplifications used Semi-empirical methods follow what are often called empirical methods where the two-electron p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Chemistry
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of Molecule, molecules, Material, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed Wave function, wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics. Chemists rely heavily on spectroscopy through which information regarding the Quantization (physics), quantization of energy on a molecular scale can be obtained. Common metho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Pople
Sir John Anthony Pople (31 October 1925 – 15 March 2004) was a British theoretical chemist who was awarded the Nobel Prize in Chemistry with Walter Kohn in 1998 for his development of computational methods in quantum chemistry. Early life and education Pople was born in Burnham-on-Sea, Somerset, and attended the Bristol Grammar School. He won a scholarship to Trinity College, Cambridge, in 1943. He received his Bachelor of Arts degree in 1946. Between 1945 and 1947 he worked at the Bristol Aeroplane Company. He then returned to the University of Cambridge and was awarded his PhD in mathematics in 1951 on lone pair electrons. Career After obtaining his PhD, he was a research fellow at Trinity College, Cambridge and then from 1954 a lecturer in the mathematics faculty at Cambridge. In 1958, he moved to the National Physical Laboratory, near London as head of the new basics physics division. He moved to the United States of America in 1964, where he lived the rest of hi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


SINDO
SINDO, is one of many semi-empirical quantum chemistry methods. It stands for symmetric orthogonalised INDO and was developed by K. Jug and coworkers. Like MINDO, it is a development of the INDO method. The main development is the inclusion of d orbitals for atoms of the second row of the periodic table. It performs better for hypervalent compounds than other semiempirical methods.K. Jug and J. Schulz, Journal of Computational Chemistry The ''Journal of Computational Chemistry'' is a peer-reviewed scientific journal published since 1980 by John Wiley & Sons. It covers research, contemporary developments in theory and methodology, and applications in all areas of computational chem ..., 9, 40, (1988) References Semiempirical quantum chemistry methods {{quantum-chemistry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ZINDO
ZINDO is a semi-empirical quantum chemistry method used in computational chemistry. It is a development of the INDO method. It stands for Zerner's Intermediate Neglect of Differential Overlap, as it was developed by Michael Zerner and his coworkers in the 1970s. Unlike INDO, which was really restricted to organic molecules and those containing the atoms B to F, ZINDO covers a wide range of the periodic table, even including the rare-earth elements. There are two distinct versions of the method: * ZINDO/1 – for calculating ground-state properties such as bond lengths and bond angles. It refers to a SCF (RHF or ROHF) calculation with the INDO/1 level as suggested by Pople, which provides the reference state MO coefficients. Ground-state dipole moments and ionization potentials are in general very accurate. Geometry optimizations are erratic, what prompted Zerner's group to improve the performance of the code in the late 1990sJ. D. Da Motta Neto, M. Zerner, Int. J. Quantum Chem. 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




SAM1
SAM1, or "Semiempirical ab initio Model 1", is a semiempirical quantum chemistry method for computing molecular properties. It is an implementation the general Neglect of Differential Diatomic Overlap (NDDO) integral approximation, and is efficient and accurate. Related methods are AM1, PM3 and the older MNDO. SAM1 was developed by M.J.S. Dewar and co-workers at the University of Texas and the University of Florida. Papers describing the implementation of the method and its results were published in 1993 and 1994. The method is implemented in the AMPAC program produced bSemichem SAM1 builds on the success of the Dewar-style semiempirical models by adding two new aspects to the AM1/PM3 formalism: #Two-electron repulsion integrals (TERIs) are computed from a minimal basis set of contracted Gaussian functions, as opposed to the previously used multipole expansion. Note that the NDDO approximation is still in effect, and that only a few of the possible TERIs are explicitly compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PM3 (chemistry)
PM3, or Parametric Method 3, is a semi-empirical method for the quantum calculation of molecular electronic structure in computational chemistry. It is based on the Neglect of Differential Diatomic Overlap integral approximation. The PM3 method uses the same formalism and equations as the AM1 method. The only differences are: 1) PM3 uses two Gaussian functions for the core repulsion function, instead of the variable number used by AM1 (which uses between one and four Gaussians per element); 2) the numerical values of the parameters are different. The other differences lie in the philosophy and methodology used during the parameterization: whereas AM1 takes some of the parameter values from spectroscopical measurements, PM3 treats them as optimizable values. The method was developed by J. J. P. Stewart and first published in 1989. It is implemented in the MOPAC program (of which the older versions are public domain), along with the related RM1, AM1, MNDO and MINDO methods, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Austin Model 1
Austin Model 1, or AM1, is a semi-empirical method for the quantum calculation of molecular electronic structure in computational chemistry. It is based on the Neglect of Differential Diatomic Overlap integral approximation. Specifically, it is a generalization of the modified neglect of differential diatomic overlap approximation. Related methods are PM3 and the older MINDO. AM1 was developed by Michael Dewar and co-workers and published in 1985. AM1 is an attempt to improve the MNDO model by reducing the repulsion of atoms at close separation distances. The atomic core-atomic core terms in the MNDO equations were modified through the addition of off-center attractive and repulsive Gaussian functions. The complexity of the parameterization problem increased in AM1 as the number of parameters per atom increased from 7 in MNDO to 13-16 per atom in AM1. The results of AM1 calculations are sometimes used as the starting points for parameterizations of forcefields in molecular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE