Secondary Constraint
   HOME
*





Secondary Constraint
In Hamiltonian mechanics, a primary constraint is a relation between the coordinates and momenta that holds without using the equations of motion. A secondary constraint is one that is not primary—in other words it holds when the equations of motion are satisfied, but need not hold if they are not satisfied The secondary constraints arise from the condition that the primary constraints should be preserved in time. A few authors use more refined terminology, where the non-primary constraints are divided into secondary, tertiary, quaternary, etc. constraints. The secondary constraints arise directly from the condition that the primary constraints are preserved by time, the tertiary constraints arise from the condition that the secondary ones are also preserved by time, and so on. Primary and secondary constraints were introduced by Anderson and Bergmann Bergmann is a German or Swedish surname. It means "mountain man" in both languages, as well as "miner" in German. '' Bergman ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hamiltonian Mechanics
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics. Overview Phase space coordinates (p,q) and Hamiltonian H Let (M, \mathcal L) be a mechanical system with the configuration space M and the smooth Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''momenta''. (Also ''generalized momenta'', ''conjugate momenta'', and ''canonical momenta''). For a time instant t, the Legendre transformat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coordinate System
In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes by a letter, as in "the ''x''-coordinate". The coordinates are taken to be real numbers in elementary mathematics, but may be complex numbers or elements of a more abstract system such as a commutative ring. The use of a coordinate system allows problems in geometry to be translated into problems about numbers and ''vice versa''; this is the basis of analytic geometry. Common coordinate systems Number line The simplest example of a coordinate system is the identification of points on a line with real numbers using the ''number line''. In this system, an arbitrary point ''O'' (the ''origin'') is chosen on a given line. The coordinate of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass and is its velocity (also a vector quantity), then the object's momentum is : \mathbf = m \mathbf. In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is equivalent to the newton-second. Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference, but in any inertial frame it is a ''conserved'' quantity, meaning that if a closed system is not affected by external forces, its total linear momentum does not change. Momentum is also conserved in special relativity (with a modified formula) and, in a modified form, in electrodynamics, quantum mechanics, quan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equations Of Motion
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.''Encyclopaedia of Physics'' (second Edition), R.G. Lerner, G.L. Trigg, VHC Publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1 (VHC Inc.) 0-89573-752-3 More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.''Analytical Mechanics'', L.N. Hand, J.D. Finch, Cambridge University Press, 2008, The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time
Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions. Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars. Nevertheless, diverse fields such as business, industry, sports, the sciences, and the performing arts all incorporate some notion of time into their respective measuring systems. 108 pages. Time in physics is operationally defined as "what a clock reads". The physical nature of time is addre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Bergmann
Peter Gabriel Bergmann (24 March 1915 – 19 October 2002) was a German-American physicist best known for his work with Albert Einstein on a unified field theory encompassing all physical interactions. He also introduced primary and secondary constraints into mechanics. Early life and education Bergmann was born into a Jewish family of Max Bergmann, a biochemistry professor and Emmy Bergmann, a pediatrician in Berlin. His father would later be a professor of chemistry at the Rockefeller Institute for Medical Research. He began college in 1931, at the age of 16, at ''Technische Hochschule'' (now TU Dresden) under the mentorship of Harry Dember. Bergmann obtained his PhD at the age of 21 from the German University in Prague in 1936 under the direction of Philipp Frank. Bergmann's family scattered all over the world during Nazi rule; his sister Clara stayed behind and ultimately was murdered at Auschwitz. Career Bergmann's association with Einstein began without his knowled ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


First Class Constraint
A first class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space (the surface implicitly defined by the simultaneous vanishing of all the constraints). To calculate the first class constraint, one assumes that there are no second class constraints, or that they have been calculated previously, and their Dirac brackets generated. First and second class constraints were introduced by as a way of quantizing mechanical systems such as gauge theories where the symplectic form is degenerate. The terminology of first and second class constraints is confusingly similar to that of primary and secondary constraints, reflecting the manner in which these are generated. These divisions are independent: both first and second class constraints can be either primary or secondary, so this gives altogether four different classes of constraints. Poisson brackets Consider a Po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canadian Journal Of Mathematics
The ''Canadian Journal of Mathematics'' (french: Journal canadien de mathématiques) is a bimonthly mathematics journal published by the Canadian Mathematical Society. It was established in 1949 by H. S. M. Coxeter and G. de B. Robinson. The current editors-in-chief of the journal are Louigi Addario-Berry and Eyal Goren. The journal publishes articles in all areas of mathematics. See also * Canadian Mathematical Bulletin The ''Canadian Mathematical Bulletin'' (french: Bulletin Canadien de Mathématiques) is a mathematics journal, established in 1958 and published quarterly by the Canadian Mathematical Society. The current editors-in-chief of the journal are Antoni ... References External links * University of Toronto Press academic journals Mathematics journals Publications established in 1949 Bimonthly journals Multilingual journals Cambridge University Press academic journals Academic journals associated with learned and professional societies of Canada ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]