Scoreboarding
   HOME
*





Scoreboarding
Scoreboarding is a centralized method, first used in the CDC 6600 computer, for dynamically scheduling instructions so that they can execute out of order when there are no conflicts and the hardware is available. In a scoreboard, the data dependencies of every instruction are logged, tracked and strictly observed at all times. Instructions are released only when the scoreboard determines that there are no conflicts with previously issued ("in flight") instructions. If an instruction is stalled because it is unsafe to issue (or there are insufficient resources), the scoreboard monitors the flow of executing instructions until all dependencies have been resolved before the stalled instruction is issued. In essence: reads proceed on the absence of write hazards, and writes proceed in the absence of read hazards. Scoreboarding is essentially a hardware implementation of the same underlying algorithm seen in dataflow languages, creating a Directed Acyclic Graph, where the same logic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


RAW Conflict
In the domain of central processing unit (CPU) CPU design, design, hazards are problems with the instruction pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock cycle, and can potentially lead to incorrect computation results. Three common types of hazards are data hazards, structural hazards, and control hazards (branching hazards). There are several methods used to deal with hazards, including pipeline stalls/pipeline bubbling, #Operand forwarding, operand forwarding, and in the case of out-of-order execution, the scoreboarding method and the Tomasulo algorithm. Background Instruction (computer science), Instructions in a pipelined processor are performed in several stages, so that at any given time several instructions are being processed in the various stages of the pipeline, such as fetch and execute. There are many different instruction pipeline microarchitectures, and instructions may be out-of-order execution, executed out ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hazard (computer Architecture)
In the domain of central processing unit (CPU) design, hazards are problems with the instruction pipeline in CPU microarchitectures when the next instruction cannot execute in the following clock cycle, and can potentially lead to incorrect computation results. Three common types of hazards are data hazards, structural hazards, and control hazards (branching hazards). There are several methods used to deal with hazards, including pipeline stalls/pipeline bubbling, operand forwarding, and in the case of out-of-order execution, the scoreboarding method and the Tomasulo algorithm. Background Instructions in a pipelined processor are performed in several stages, so that at any given time several instructions are being processed in the various stages of the pipeline, such as fetch and execute. There are many different instruction pipeline microarchitectures, and instructions may be executed out-of-order. A hazard occurs when two or more of these simultaneous (possibly out of or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Glenford Myers
Glenford Myers (born December 12, 1946) is an American computer scientist, entrepreneur, and author. He founded two successful high-tech companies (RadiSys and IP Fabrics), authored eight textbooks in the computer sciences, and made important contributions in microprocessor architecture. He holds a number of patents, including the original patent on "register scoreboarding" in microprocessor chips. He has a BS in electrical engineering from Clarkson University, an MS in computer science from Syracuse University, and a PhD in computer science from the Polytechnic Institute of New York University. Career IBM Myers joined IBM in 1968 in its Poughkeepsie, New York lab. After spending a few years working on developments associated with the System/360 mainframes, he moved to the prestigious IBM Systems Research Institute in New York City. There he headed up a small team of people developing an advanced computer system named "SWARD" (Software Oriented Architecture) incorporating ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tomasulo Algorithm
Tomasulo's algorithm is a computer architecture hardware algorithm for dynamic scheduling of instructions that allows out-of-order execution and enables more efficient use of multiple execution units. It was developed by Robert Tomasulo at IBM in 1967 and was first implemented in the IBM System/360 Model 91’s floating point unit. The major innovations of Tomasulo’s algorithm include register renaming in hardware, reservation stations for all execution units, and a common data bus (CDB) on which computed values broadcast to all reservation stations that may need them. These developments allow for improved parallel execution of instructions that would otherwise stall under the use of scoreboarding or other earlier algorithms. Robert Tomasulo received the Eckert–Mauchly Award in 1997 for his work on the algorithm. Implementation concepts The following are the concepts necessary to the implementation of Tomasulo's algorithm: Common data bus The Common Data Bus (CDB) connect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Out-of-order Execution
In computer engineering, out-of-order execution (or more formally dynamic execution) is a paradigm used in most high-performance central processing units to make use of instruction cycles that would otherwise be wasted. In this paradigm, a processor executes instructions in an order governed by the availability of input data and execution units, rather than by their original order in a program. In doing so, the processor can avoid being idle while waiting for the preceding instruction to complete and can, in the meantime, process the next instructions that are able to run immediately and independently. History Out-of-order execution is a restricted form of data flow computation, which was a major research area in computer architecture in the 1970s and early 1980s. The first machine to use out-of-order execution was the CDC 6600 (1964), designed by James E. Thornton, which uses a scoreboard to avoid conflicts. It permits an instruction to execute if its source operand (read) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

CDC 6600
The CDC 6600 was the flagship of the 6000 series of mainframe computer systems manufactured by Control Data Corporation. Generally considered to be the first successful supercomputer, it outperformed the industry's prior recordholder, the IBM 7030 Stretch, by a factor of three."Designed by Seymour Cray, the CDC 6600 was almost three times faster than the next fastest machine of its day, the IBM 7030 Stretch." With performance of up to three megaFLOPS, the CDC 6600 was the world's fastest computer from 1964 to 1969, when it relinquished that status to its successor, the CDC 7600."The 7600 design lasted longer than any other supercomputer design. It had the highest performance of any computer from its introduction in 1969 till the introduction of the Cray 1 in 1976." The first CDC 6600s were delivered in 1965 to Livermore and Los Alamos. They quickly became a must-have system in high-end scientific and mathematical computing, with systems being delivered to Courant Insti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Dependency
A data dependency in computer science is a situation in which a program statement (instruction) refers to the data of a preceding statement. In compiler theory, the technique used to discover data dependencies among statements (or instructions) is called dependence analysis. There are three types of dependencies: data, name, and control. Data dependencies Assuming statement S_1 and S_2, S_2 depends on S_1 if: :\left (S_1) \cap O(S_2)\right\cup \left (S_1) \cap I(S_2)\right\cup \left (S_1) \cap O(S_2)\right\neq \varnothing where: * I(S_i) is the set of memory locations read by * O(S_j) is the set of memory locations written by and * there is a feasible run-time execution path from S_1 to This Condition is called Bernstein Condition, named by A. J. Bernstein. Three cases exist: * Anti-dependence: I(S_1) \cap O(S_2) \neq \varnothing, S_1 \rightarrow S_2 and S_1 reads something before S_2 overwrites it * Flow (data) dependence: O(S_1) \cap I(S_2) \neq \varnothing, S_1 \right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dataflow Language
In computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the data flowing between operations, thus implementing dataflow principles and architecture. Dataflow programming languages share some features of functional languages, and were generally developed in order to bring some functional concepts to a language more suitable for numeric processing. Some authors use the term ''datastream'' instead of '' dataflow'' to avoid confusion with dataflow computing or dataflow architecture, based on an indeterministic machine paradigm. Dataflow programming was pioneered by Jack Dennis and his graduate students at MIT in the 1960s. Considerations Traditionally, a program is modelled as a series of operations happening in a specific order; this may be referred to as sequential, procedural, control flow (indicating that the program chooses a specific path), or imperative programming. The program focuses on commands, in line with the v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Directed Acyclic Graph
In mathematics, particularly graph theory, and computer science, a directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it consists of vertices and edges (also called ''arcs''), with each edge directed from one vertex to another, such that following those directions will never form a closed loop. A directed graph is a DAG if and only if it can be topologically ordered, by arranging the vertices as a linear ordering that is consistent with all edge directions. DAGs have numerous scientific and computational applications, ranging from biology (evolution, family trees, epidemiology) to information science (citation networks) to computation (scheduling). Directed acyclic graphs are sometimes instead called acyclic directed graphs or acyclic digraphs. Definitions A graph is formed by vertices and by edges connecting pairs of vertices, where the vertices can be any kind of object that is connected in pairs by edges. In the case of a directed graph, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Programming Language
A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming language is usually split into the two components of syntax (form) and semantics (meaning), which are usually defined by a formal language. Some languages are defined by a specification document (for example, the C programming language is specified by an ISO Standard) while other languages (such as Perl) have a dominant implementation that is treated as a reference. Some languages have both, with the basic language defined by a standard and extensions taken from the dominant implementation being common. Programming language theory is the subfield of computer science that studies the design, implementation, analysis, characterization, and classification of programming languages. Definitions There are many considerations when defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Data Dependency
A data dependency in computer science is a situation in which a program statement (instruction) refers to the data of a preceding statement. In compiler theory, the technique used to discover data dependencies among statements (or instructions) is called dependence analysis. There are three types of dependencies: data, name, and control. Data dependencies Assuming statement S_1 and S_2, S_2 depends on S_1 if: :\left (S_1) \cap O(S_2)\right\cup \left (S_1) \cap I(S_2)\right\cup \left (S_1) \cap O(S_2)\right\neq \varnothing where: * I(S_i) is the set of memory locations read by * O(S_j) is the set of memory locations written by and * there is a feasible run-time execution path from S_1 to This Condition is called Bernstein Condition, named by A. J. Bernstein. Three cases exist: * Anti-dependence: I(S_1) \cap O(S_2) \neq \varnothing, S_1 \rightarrow S_2 and S_1 reads something before S_2 overwrites it * Flow (data) dependence: O(S_1) \cap I(S_2) \neq \varnothing, S_1 \right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Data Dependency
A data dependency in computer science is a situation in which a program statement (instruction) refers to the data of a preceding statement. In compiler theory, the technique used to discover data dependencies among statements (or instructions) is called dependence analysis. There are three types of dependencies: data, name, and control. Data dependencies Assuming statement S_1 and S_2, S_2 depends on S_1 if: :\left (S_1) \cap O(S_2)\right\cup \left (S_1) \cap I(S_2)\right\cup \left (S_1) \cap O(S_2)\right\neq \varnothing where: * I(S_i) is the set of memory locations read by * O(S_j) is the set of memory locations written by and * there is a feasible run-time execution path from S_1 to This Condition is called Bernstein Condition, named by A. J. Bernstein. Three cases exist: * Anti-dependence: I(S_1) \cap O(S_2) \neq \varnothing, S_1 \rightarrow S_2 and S_1 reads something before S_2 overwrites it * Flow (data) dependence: O(S_1) \cap I(S_2) \neq \varnothing, S_1 \right ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]