HOME
*





Superstrong Cardinal
In mathematics, a cardinal number κ is called superstrong if and only if there exists an elementary embedding ''j'' : ''V'' → ''M'' from ''V'' into a transitive inner model ''M'' with critical point κ and V_ ⊆ ''M''. Similarly, a cardinal κ is n-superstrong if and only if there exists an elementary embedding ''j'' : ''V'' → ''M'' from ''V'' into a transitive inner model ''M'' with critical point κ and V_ ⊆ ''M''. Akihiro Kanamori is a Japanese-born American mathematician. He specializes in set theory and is the author of the monograph on large cardinal property, large cardinals, ''The Higher Infinite''. He has written several essays on the history of mathematics, especia ... has shown that the consistency strength of an n+1-superstrong cardinal exceeds that of an n-huge cardinal for each n > 0. References * Set theory Large cardinals {{settheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinal Number
In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The ''transfinite'' cardinal numbers, often denoted using the Hebrew symbol \aleph ( aleph) followed by a subscript, describe the sizes of infinite sets. Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Embedding
In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often needs a stronger condition. In this case ''N'' is called an elementary substructure of ''M'' if every first-order ''σ''-formula ''φ''(''a''1, …, ''a''''n'') with parameters ''a''1, …, ''a''''n'' from ''N'' is true in ''N'' if and only if it is true in ''M''. If ''N'' is an elementary substructure of ''M'', then ''M'' is called an elementary extension of ''N''. An embedding ''h'': ''N'' → ''M'' is called an elementary embedding of ''N'' into ''M'' if ''h''(''N'') is an elementary substructure of ''M''. A substructure ''N'' of ''M'' is elementary if and only if it passes the Tarski–Vaught test: every first-order formula ''φ''(''x'', ''b''1, …, ''b''''n'') with para ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Critical Point (set Theory)
In set theory, the critical point of an elementary embedding of a transitive class into another transitive class is the smallest ordinal which is not mapped to itself. p. 323 Suppose that j: N \to M is an elementary embedding where N and M are transitive classes and j is definable in N by a formula of set theory with parameters from N. Then j must take ordinals to ordinals and j must be strictly increasing. Also j(\omega) = \omega. If j(\alpha) = \alpha for all \alpha \kappa, then \kappa is said to be the critical point of j. If N is '' V'', then \kappa (the critical point of j) is always a measurable cardinal, i.e. an uncountable cardinal number ''κ'' such that there exists a \kappa-complete, non-principal ultrafilter over \kappa. Specifically, one may take the filter to be \. Generally, there will be many other <''κ''-complete, non-principal ultrafilters over \kappa. However, j might be different from the

picture info

Akihiro Kanamori
is a Japanese-born American mathematician. He specializes in set theory and is the author of the monograph on large cardinal property, large cardinals, ''The Higher Infinite''. He has written several essays on the history of mathematics, especially set theory. Kanamori graduated from California Institute of Technology and earned a Ph.D. from the University of Cambridge (King's College, Cambridge, King's College). He is a professor of mathematics at Boston University. With Matthew Foreman he is the editor of the ''Handbook of Set Theory'' (2010). Selected publications * A. Kanamori, Menachem Magidor, M. MagidorThe evolution of large cardinal axioms in set theory in: ''Higher set theory'' (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977), Lecture Notes in Mathematics, 669, Springer, 99–275. * Robert Solovay, R. M. Solovay, W. N. Reinhardt, A. KanamoriStrong axioms of infinity and elementary embeddings ''Annals of Mathematical Logic'', 13(1978), 73–116. * A. Kan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




N-huge Cardinal
In mathematics, a cardinal number κ is called huge if there exists an elementary embedding ''j'' : ''V'' → ''M'' from ''V'' into a transitive inner model ''M'' with critical point κ and :^M \subset M.\! Here, ''αM'' is the class of all sequences of length α whose elements are in M. Huge cardinals were introduced by . Variants In what follows, j''n'' refers to the ''n''-th iterate of the elementary embedding j, that is, j composed with itself ''n'' times, for a finite ordinal ''n''. Also, ''<αM'' is the class of all sequences of length less than α whose elements are in M. Notice that for the "super" versions, γ should be less than j(κ), not . κ is almost n-huge if and only if there is ''j'' : ''V'' → ''M'' with critical point κ and :^M \subset M.\! κ is super almost n-huge if and only if for every ordinal γ there is ''j'' : ''V'' → ''M'' with critical point κ, γ<j(κ), and :^M \subset M.\! κ is n-huge if and only if there is ''j'' : ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]