HOME
*





Supermathematics
Supermathematics is the branch of mathematical physics which applies the mathematics of Lie superalgebras to the behaviour of bosons and fermions. The driving force in its formation in the 1960s and 1970s was Felix Berezin. Objects of study include superalgebras (such as super Minkowski space and super-Poincaré algebra), superschemes, supermetrics/supersymmetry, supermanifolds, supergeometry, and supergravity, namely in the context of superstring theory. References "The importance of Lie algebras" Professor Isaiah Kantor, Lund University External links * Felix Berezin, The Life and Death of the Mastermind of Supermathematics', edited by Mikhail Shifman Mikhail "Misha" Arkadyevich Shifman (russian: Михаи́л Арка́дьевич Ши́фман; born 4 April 1949) is a theoretical physicist (high energy physics), formerly at Institute for Theoretical and Experimental Physics, Moscow, Ida ..., World Scientific, Singapore, 2007, Mathematical physics Supersymmetry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Felix Berezin
Felix Alexandrovich Berezin (russian: Фе́ликс Алекса́ндрович Бере́зин; 25 April 1931 – 14 July 1980) was a Soviet Russian mathematician and physicist known for his contributions to the theory of supersymmetry and supermanifolds as well as to the path integral formulation of quantum field theory. Berezin studied at the Moscow State University, but was not allowed to do his graduate studies there on account of his Jewish origin (his mother was Jewish). For the next three years Berezin taught at Moscow high schools. He continued to study mathematical physics under direction of Israel Gelfand. After Khrushchev's liberalization, he joined the Department of Mathematics at the Moscow State University at the age of 25. The Berezin integral over anticommuting Grassmann variables is named for him, as is the closely related construction of the Berezinian which may be regarded as the " super"-analog of the determinant. Berezin drowned during a summer trip i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Mikhail Shifman
Mikhail "Misha" Arkadyevich Shifman (russian: Михаи́л Арка́дьевич Ши́фман; born 4 April 1949) is a theoretical physicist (high energy physics), formerly at Institute for Theoretical and Experimental Physics, Moscow, Ida Cohen Fine Professor of Theoretical Physics, William I. Fine Theoretical Physics Institute, University of Minnesota. Scientific contributions Shifman is known for a number of basic contributions to quantum chromodynamics, the theory of strong interactions, and to understanding of supersymmetric gauge dynamics. The most important results due to M. Shifman are diverse and include (i) the discovery of the penguin mechanism in the flavor-changing weak decays (1974); (ii) introduction of the gluon condensate and development of the SVZ sum rules relating properties of the low-lying hadronic states to the vacuum condensates (1979); (iii) introduction of the invisible axion (1980) (iv) first exact results in supersymmetric Yang-Mills theories ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supermanifold
In physics and mathematics, supermanifolds are generalizations of the manifold concept based on ideas coming from supersymmetry. Several definitions are in use, some of which are described below. Informal definition An informal definition is commonly used in physics textbooks and introductory lectures. It defines a supermanifold as a manifold with both bosonic and fermionic coordinates. Locally, it is composed of coordinate charts that make it look like a "flat", "Euclidean" superspace. These local coordinates are often denoted by :(x,\theta,\bar) where ''x'' is the ( real-number-valued) spacetime coordinate, and \theta\, and \bar are Grassmann-valued spatial "directions". The physical interpretation of the Grassmann-valued coordinates are the subject of debate; explicit experimental searches for supersymmetry have not yielded any positive results. However, the use of Grassmann variables allow for the tremendous simplification of a number of important mathematical results. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lund University
, motto = Ad utrumque , mottoeng = Prepared for both , established = , type = Public research university , budget = SEK 9 billion Facts and figures
Lund University web site.
, head_label = , head = Erik Renström , academic_staff = 4,780 (2022) (academic staff, researchers and employed research students) , administrative_staff = 2,890 (2022) , students = 46 000 (29 000 full-time e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isaiah Kantor
Isaiah Kantor (or Issai Kantor, or Isai Lʹvovich Kantor) (1936–2006) was a mathematician who introduced the Kantor–Koecher–Tits construction, and the Kantor double, a Jordan superalgebra constructed from a Poisson algebra In mathematics, a Poisson algebra is an associative algebra together with a Lie bracket that also satisfies Leibniz's law; that is, the bracket is also a derivation. Poisson algebras appear naturally in Hamiltonian mechanics, and are also central .... References * Russian mathematicians 2006 deaths 1936 births {{Russia-mathematician-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superstring Theory
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories are regarded as different limits of a single theory tentatively called M-theory. Background The deepest problem in theoretical physics is harmonizing the theory of general relativity, which describes gravitation and applies to large-scale structures (stars, galaxies, super clusters), with quantum mechanics, which describes the other three fundamental forces acting on the atomic scale. The development of a quantum field theory of a force invariably results in infinite possibilities. Physicists developed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. Gravitons Like any field theory of gravity, a supergravity theory contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries. History Gauge supersymmetry The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supergeometry
Supergeometry is differential geometry of modules over graded commutative algebras, supermanifolds and graded manifolds. Supergeometry is part and parcel of many classical and quantum field theories involving odd fields, e.g., SUSY field theory, BRST theory, or supergravity. Supergeometry is formulated in terms of \mathbb Z_2-graded modules and sheaves over \mathbb Z_2-graded commutative algebras (supercommutative algebras). In particular, superconnections are defined as Koszul connections on these modules and sheaves. However, supergeometry is not particular noncommutative geometry because of a different definition of a graded derivation. Graded manifolds and supermanifolds also are phrased in terms of sheaves of graded commutative algebras. Graded manifolds are characterized by sheaves on smooth manifolds, while supermanifolds are constructed by gluing of sheaves of supervector spaces. There are different types of supermanifolds. These are smooth supermanifolds (H^\infty-, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]