HOME
*



picture info

Supercommutator
In mathematics, a Lie superalgebra is a generalisation of a Lie algebra to include a Z2 grading. Lie superalgebras are important in theoretical physics where they are used to describe the mathematics of supersymmetry. In most of these theories, the ''even'' elements of the superalgebra correspond to bosons and ''odd'' elements to fermions (but this is not always true; for example, the BRST supersymmetry is the other way around). Definition Formally, a Lie superalgebra is a nonassociative Z2-graded algebra, or ''superalgebra'', over a commutative ring (typically R or C) whose product ·, Â· called the Lie superbracket or supercommutator, satisfies the two conditions (analogs of the usual Lie algebra axioms, with grading): Super skew-symmetry: : ,y-(-1)^ ,x\ The super Jacobi identity: :(-1)^ ,_z.html"_;"title=",_[y,_z">,_[y,_z_+_(-1)^ ,_[y,_z_+_(-1)^[y,_[z,_x.html"_;"title=",_z.html"_;"title=",_[y,_z">,_[y,_z_+_(-1)^[y,_[z,_x">,_z.html"_;"title=",_[y,_z">,_[y,_z_+_(-1)^[y,_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Universal Enveloping Algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators. Because Casimir operators commute with all elements of a Lie algebra, they can be used to classify representations. The precise definition also allows the importation of Casimir operators into other areas of mathematics, specifically, those that have a differential algebra. They also play a central role in some recent developments in mathematics. In particular, their dual provides a commutative example of the objects studied in non-commutative geometry, the quantum groups. This dual can be shown, by the Gelfand–N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anyonic Lie Algebra
In mathematics, an anyonic Lie algebra is a ''U''(1) graded vector space L over \Complex equipped with a bilinear operator cdot, \cdot\colon L \times L \rightarrow L and linear maps \varepsilon \colon L \to \Complex (some authors use , \cdot, \colon L \to \Complex) and \Delta \colon L \to L\otimes L such that \Delta X = X_i \otimes X^i, satisfying following axioms: *\varepsilon( ,Y = \varepsilon(X)\varepsilon(Y) * , Yi \otimes , Y The comma is a punctuation mark that appears in several variants in different languages. It has the same shape as an apostrophe or single closing quotation mark () in many typefaces, but it differs from them in being placed on the baseline ...i = _i, Y_j\otimes ^i, Y^je^ *X_i \otimes ^i, Y= X^i \otimes _i, Ye^ * ,_Z.html"_;"title=",_[Y,_Z">,_[Y,_Z_=_X_i,_Y_[X^i,_Z.html" ;"title=",_Z">,_[Y,_Z_=_X_i,_Y.html" ;"title=",_Z.html" ;"title=", [Y, Z">, [Y, Z = X_i, Y">,_Z.html" ;"title=", [Y, Z">, [Y, Z = X_i, Y [X^i, Z">,_Z">,_[Y,_Z_=_X_i,_Y.html ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gerstenhaber Algebra
In mathematics and theoretical physics, a Gerstenhaber algebra (sometimes called an antibracket algebra or braid algebra) is an algebraic structure discovered by Murray Gerstenhaber (1963) that combines the structures of a supercommutative ring and a graded Lie superalgebra. It is used in the Batalin–Vilkovisky formalism. It appears also in the generalization of Hamiltonian formalism known as the De Donder–Weyl theory as the algebra of generalized Poisson brackets defined on differential forms. Definition A Gerstenhaber algebra is a graded-commutative algebra with a Lie bracket of degree −1 satisfying the Poisson identity. Everything is understood to satisfy the usual superalgebra sign conventions. More precisely, the algebra has two products, one written as ordinary multiplication and one written as and a Z-grading called degree (in theoretical physics sometimes called ghost number). The degree of an element ''a'' is denoted by , ''a'', . These satisfy the identiti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category Theory
Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, category theory is used in almost all areas of mathematics, and in some areas of computer science. In particular, many constructions of new mathematical objects from previous ones, that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality. A category is formed by two sorts of objects: the objects of the category, and the morphisms, which relate two objects called the ''source'' and the ''target'' of the morphism. One often says that a morphism is an ''arrow'' that ''maps'' its source to its target. Morphisms can be ''composed'' if the target of the first morphism equals the source of the second one, and morphism compos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superstring Theory
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories are regarded as different limits of a single theory tentatively called M-theory. Background The deepest problem in theoretical physics is harmonizing the theory of general relativity, which describes gravitation and applies to large-scale structures (stars, galaxies, super clusters), with quantum mechanics, which describes the other three fundamental forces acting on the atomic scale. The development of a quantum field theory of a force invariably results in infinite possibilities. Physicists developed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Supergravity
In theoretical physics, supergravity (supergravity theory; SUGRA for short) is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way. Gravitons Like any field theory of gravity, a supergravity theory contains a spin-2 field whose quantum is the graviton. Supersymmetry requires the graviton field to have a superpartner. This field has spin 3/2 and its quantum is the gravitino. The number of gravitino fields is equal to the number of supersymmetries. History Gauge supersymmetry The first theory of local supersymmetry was proposed by Dick Arnowitt and Pran Nath in 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthosymplectic Group
The concept of supergroup is a generalization of that of group. In other words, every supergroup carries a natural group structure, but there may be more than one way to structure a given group as a supergroup. A supergroup is like a Lie group in that there is a well defined notion of smooth function defined on them. However the functions may have even and odd parts. Moreover, a supergroup has a super Lie algebra which plays a role similar to that of a Lie algebra for Lie groups in that they determine most of the representation theory and which is the starting point for classification. Details More formally, a Lie supergroup is a supermanifold ''G'' together with a multiplication morphism \mu :G \times G\rightarrow G, an inversion morphism i : G \rightarrow G and a unit morphism e: 1 \rightarrow G which makes ''G'' a group object in the category of supermanifolds. This means that, formulated as commutative diagrams, the usual associativity and inversion axioms of a group continue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Victor Kac
Victor Gershevich (Grigorievich) Kac (russian: link=no, Виктор Гершевич (Григорьевич) Кац; born 19 December 1943) is a Soviet and American mathematician at MIT, known for his work in representation theory. He co-discovered Kac–Moody algebras, and used the Weyl character formula#Weyl.E2.80.93Kac character formula, Weyl–Kac character formula for them to reprove the Macdonald identities. He classified the finite-dimensional simple Lie superalgebras, and found the Kac determinant formula for the Virasoro algebra. He is also known for the Kac–Weisfeiler conjectures with Boris Weisfeiler. Biography Kac studied mathematics at Moscow State University, receiving his MS in 1965 and his PhD in 1968. From 1968 to 1976, he held a teaching position at the Moscow Institute of Electronic Machine Building (MIEM). He left the Soviet Union in 1977, becoming an associate professor of mathematics at MIT. In 1981, he was promoted to full professor. Kac received a Sloa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Superspace
Superspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions ''x'', ''y'', ''z'', ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom. The word "superspace" was first used by John Archibald Wheeler, John Wheeler in an unrelated sense to describe the Configuration space (physics), configuration space of general relativity; for example, this usage may be seen in his 1973 textbook ''Gravitation (book), Gravitation''. Informal discussion There are several similar, but not equivalent, definitions of superspace that have been used, and continue to be used in the mathematical and physics literature. One such usage is as a synonym for super Minkowski space. In this case, one takes ordinary Minkowski space, and extends ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Super-Poincaré Algebra
In theoretical physics, a super-Poincaré algebra is an extension of the Poincaré algebra to incorporate supersymmetry, a relation between bosons and fermions. They are examples of supersymmetry algebras (without central charges or internal symmetries), and are Lie superalgebras. Thus a super-Poincaré algebra is a Z2-graded vector space with a graded Lie bracket such that the even part is a Lie algebra containing the Poincaré algebra, and the odd part is built from spinors on which there is an anticommutation relation with values in the even part. Informal sketch The Poincaré algebra describes the isometries of Minkowski spacetime. From the representation theory of the Lorentz group, it is known that the Lorentz group admits two inequivalent complex spinor representations, dubbed 2 and \overline.The barred representations are conjugate linear while the unbarred ones are complex linear. The numeral refers to the dimension of the representation space. Another more common notat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]