Subcellular Fractionation
In cell biology, cell fractionation is the process used to separate cellular components while preserving individual functions of each component. This is a method that was originally used to demonstrate the cellular location of various biochemical processes. Other uses of subcellular fractionation is to provide an enriched source of a protein for further purification, and facilitate the diagnosis of various disease states. Homogenization Tissue is typically homogenized in a buffer solution that is isotonic to stop osmotic damage. Mechanisms for homogenization include grinding, mincing, chopping, pressure changes, osmotic shock, freeze-thawing, and ultra-sound. The samples are then kept cold to prevent enzymatic damage. It is the formation of homogenous mass of cells (cell homogenate or cell suspension). It involves grinding of cells in a suitable medium in the presence of certain enzymes with correct pH, ionic composition, and temperature. For example, pectinase which digests ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cell Biology
Cell biology (also cellular biology or cytology) is a branch of biology that studies the structure, function, and behavior of cells. All living organisms are made of cells. A cell is the basic unit of life that is responsible for the living and functioning of organisms. Cell biology is the study of structural and functional units of cells. Cell biology encompasses both prokaryotic and eukaryotic cells and has many subtopics which may include the study of cell metabolism, cell communication, cell cycle, biochemistry, and cell composition. The study of cells is performed using several microscopy techniques, cell culture, and cell fractionation. These have allowed for and are currently being used for discoveries and research pertaining to how cells function, ultimately giving insight into understanding larger organisms. Knowing the components of cells and how cells work is fundamental to all biological sciences while also being essential for research in biomedical fields such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cell (biology)
The cell is the basic structural and functional unit of life forms. Every cell consists of a cytoplasm enclosed within a membrane, and contains many biomolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and metabolites.Cell Movements and the Shaping of the Vertebrate Body in Chapter 21 of Molecular Biology of the Cell '' fourth edition, edited by Bruce Alberts (2002) published by Garland Science. The Alberts text discusses how the "cellular building blocks" move to shape developing embryos. It is also common to describe small molecules such as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biochemical Separation Processes
Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and metabolism. Over the last decades of the 20th century, biochemistry has become successful at explaining living processes through these three disciplines. Almost all areas of the life sciences are being uncovered and developed through biochemical methodology and research. Voet (2005), p. 3. Biochemistry focuses on understanding the chemical basis which allows biological molecules to give rise to the processes that occur within living cells and between cells,Karp (2009), p. 2. in turn relating greatly to the understanding of tissues and organs, as well as organism structure and function.Miller (2012). p. 62. Biochemistry is closely related to molecular biology, which is the study of the molecular mechanisms of biological phenomena.Astb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ficoll
Ficoll is a neutral, highly branched, high-mass, hydrophilic polysaccharide which dissolves readily in aqueous solutions. Ficoll radii range from 2-7 nm. It is prepared by reaction of the polysaccharide with epichlorohydrin. Ficoll is a registered trademark owned by GE Healthcare companies. Ficoll is part of Ficoll-Paque, which is used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.). Ficoll-Paque is normally placed at the bottom of a conical tube, and blood is then slowly layered above Ficoll-Paque. After being centrifuged, the following layers will be visible in the conical tube, from top to bottom: plasma and other constituents, a layer of mono-nuclear cells called buffy coat ( PBMC/MNC), Ficoll-Paque, and erythrocytes & granulocytes which should be present in pellet form. This separation allows easy harvest of PBMCs. Note that some red blood cell trapping (presence of erythrocytes & granulocytes) may occur in the PBMC or Ficoll-P ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Percoll
Percoll is a tool for efficient density separation in Cell biology that was first formulated by Pertoft and colleagues. It is used for the isolation of cells, organelles, and/or viruses by density centrifugation. Percoll consists of colloidal silica particles of 15–30 nm diameter (23% w/w in water) which have been coated with polyvinylpyrrolidone (PVP). Percoll is well suited for density gradient experiments because it possesses a low viscosity compared to alternatives, a low osmolarity, and no toxicity towards cells and their constituents. Percoll is a registered trademark of GE Healthcare. Past use in artificial reproduction Percoll was previously used in assisted reproductive technology (ART) to select sperm from semen by density gradient centrifugation, for use in techniques such as ''in vitro'' fertilization or intrauterine insemination. However, in 1996, Pharmacia sent out a letter to laboratories stating that Percoll should be used for research purposes only, no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cell Disruption
Cell disruption is a method or process for releasing biological molecules from inside a cell. Methods The production of biologically interesting molecules using cloning and culturing methods allows the study and manufacture of relevant molecules. Except for excreted molecules, cells producing molecules of interest must be disrupted. This page discusses various methods. Another method of disruption is called cell unroofing. Bead method A common laboratory-scale mechanical method for cell disruption uses glass, ceramic or steel beads, 0.1 to 2 mm in diameter, mixed with a sample suspended in aqueous media. First developed by Tim Hopkins in the late 1970s, the sample and bead mix is subjected to high level agitation by stirring or shaking. Beads collide with the cellular sample, cracking open the cell to release intercellular components. Unlike some other methods, mechanical shear is moderate during homogenization resulting in excellent membrane or subcellular preparations. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically, density is defined as mass divided by volume: : \rho = \frac where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight. For a pure substance the density has the same numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure. To simplify comparisons of density across different s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Centrifugation
In biochemistry and cell biology, differential centrifugation (also known as differential velocity centrifugation) is a common procedure used to separate organelles and other sub-cellular particles based on their sedimentation rate. Although often applied in biological analysis, differential centrifugation is a general technique also suitable for crude purification of non-living suspended particles (e.g. nanoparticles, colloidal particles, viruses). In a typical case where differential centrifugation is used to analyze cell-biological phenomena (e.g. organelle distribution), a tissue sample is first lysed to break the cell membranes and release the organelles and cytosol. The lysate is then subjected to repeated centrifugations, where particles that sediment sufficiently quickly at a given centrifugal force for a given time form a compact "pellet" at the bottom of the centrifugation tube. After each centrifugation, the ''supernatant'' (non-pelleted solution) is removed from t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Suction Filtration
Vacuum filtration is a fast filtration technique used to separate solids from liquids. Principle By flowing through the aspirator, water will suck out the air contained in the vacuum flask and the Büchner flask. There is therefore a difference in pressure between the exterior and the interior of the flasks : the contents of the Büchner funnel are sucked towards the vacuum flask. The filter, which is placed at the bottom of the Büchner funnel, separates the solids from the liquids. The solid residue, which remains at the top of the Büchner funnel, is therefore recovered more efficiently: it is much drier than it would be with a simple filtration. The rubber conical seal ensures the apparatus is hermetically closed, preventing the passage of air between the Büchner funnel and the vacuum flask. It maintains the vacuum in the apparatus and also avoids physical points of stress (glass against glass.) Diagram annotations # Filter # Büchner funnel # Conic seal # Büchner fla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gauze
Gauze is a thin, translucent fabric with a loose open weave. In technical terms "gauze" is a weave structure in which the weft yarns are arranged in pairs and are crossed before and after each warp yarn keeping the weft firmly in place. This weave structure is used to add stability to fabric, which is important when using fine yarns loosely spaced. However, this weave structure can be used with any weight of yarn, and can be seen in some rustic textiles made from coarse hand-spun plant fiber yarns. Gauze is widely used for medical dressings. Gauze can also be made of non-woven fabric. Etymology and history Gauze was traditionally woven in the Gaza region. The English word is said to derive from the place name for Gaza Webster's, 1913 ( ar, غزة ), a center of weaving in the region. Despite a prohibition on trade with non-Christians from religious authorities in medieval Europe, a fine type of silk known as ''gazzatum'' was imported from Gaza as early as the 13th cent ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |