Strong Lefschetz Theorem
In mathematics, specifically in algebraic geometry and algebraic topology, the Lefschetz hyperplane theorem is a precise statement of certain relations between the shape of an algebraic variety and the shape of its subvarieties. More precisely, the theorem says that for a variety ''X'' embedded in projective space and a hyperplane section ''Y'', the homology, cohomology, and homotopy groups of ''X'' determine those of ''Y''. A result of this kind was first stated by Solomon Lefschetz for homology groups of complex algebraic varieties. Similar results have since been found for homotopy groups, in positive characteristic, and in other homology and cohomology theories. A far-reaching generalization of the hard Lefschetz theorem is given by the decomposition theorem. The Lefschetz hyperplane theorem for complex projective varieties Let ''X'' be an ''n''-dimensional complex projective algebraic variety in CP''N'', and let ''Y'' be a hyperplane section of ''X'' such that ''U'' = ''X'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andreotti–Frankel Theorem
In mathematics, the Andreotti–Frankel theorem, introduced by , states that if V is a smooth algebraic variety, smooth, complex affine variety of complex dimension n or, more generally, if V is any Stein manifold of dimension n, then V admits a Morse function with critical points of index at most ''n'', and so V is homotopy equivalent to a CW complex of real dimension at most ''n''. Consequently, if V \subseteq \C^r is a closed connected complex submanifold of complex dimension n, then V has the homotopy type of a CW complex of real dimension \le n. Therefore :H^i(V; \Z)=0,\texti>n and :H_i(V; \Z)=0,\texti>n. This theorem applies in particular to any smooth, complex affine variety of dimension n. References * * Chapter 7. Complex manifolds Theorems in homotopy theory {{topology-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intersection Homology
In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years. Intersection cohomology was used to prove the Kazhdan–Lusztig conjectures and the Riemann–Hilbert correspondence. It is closely related to ''L''2 cohomology. Goresky–MacPherson approach The homology groups of a compact, oriented, connected, ''n''-dimensional manifold ''X'' have a fundamental property called Poincaré duality: there is a perfect pairing : H_i(X,\Q) \times H_(X,\Q) \to H_0(X,\Q) \cong \Q. Classically—going back, for instance, to Henri Poincaré—this duality was understood in terms of intersection theory. An element of :H_j(X) is represented by a ''j''-dimensional cycle. If an ''i''-dimensional and an (n-i)-dimensional cycle are in general position, then their intersection is a f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Constructible Sheaf
In mathematics, a constructible sheaf is a sheaf of abelian groups over some topological space ''X'', such that ''X'' is the union of a finite number of locally closed subsets on each of which the sheaf is a locally constant sheaf. It has its origins in algebraic geometry, where in étale cohomology constructible sheaves are defined in a similar way . For the derived category of constructible sheaves, see a section in ℓ-adic sheaf. The finiteness theorem in étale cohomology states that the higher direct images of a constructible sheaf are constructible. Definition of étale constructible sheaves on a scheme ''X'' Here we use the definition of constructible étale sheaves from the book by Freitag and Kiehl referenced below. In what follows in this subsection, all sheaves \mathcal on schemes X are étale sheaves unless otherwise noted. A sheaf \mathcal is called constructible if X can be written as a finite union of locally closed subschemes i_Y:Y \to X such that for each subsche ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Michael Artin
Michael Artin (; born 28 June 1934) is a German-American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry.Faculty profile , MIT mathematics department, retrieved 2011-01-03 Life and career Michael Artin or Artinian was born in , Germany, and brought up in . His parents were Natalia Naumovna Jasny (Natascha) and[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universal Coefficient Theorem
In algebraic topology, universal coefficient theorems establish relationships between homology groups (or cohomology groups) with different coefficients. For instance, for every topological space , its ''integral homology groups'': : completely determine its ''homology groups with coefficients in'' , for any abelian group : : Here might be the simplicial homology, or more generally the singular homology: the result itself is a pure piece of homological algebra about chain complexes of free abelian groups. The form of the result is that other coefficients may be used, at the cost of using a Tor functor. For example it is common to take to be , so that coefficients are modulo 2. This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers of and the Betti numbers with coefficients in a field . These can differ, but only when the characteristic of is a prime number fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Akizuki–Nakano Vanishing Theorem
In mathematics, specifically in the study of vector bundles over complex Kähler manifolds, the Nakano vanishing theorem, sometimes called the Akizuki–Nakano vanishing theorem, generalizes the Kodaira vanishing theorem. Given a compact complex manifold ''M'' with a holomorphic line bundle ''F'' over ''M'', the Nakano vanishing theorem provides a condition on when the cohomology groups H^q(M; \Omega^p(F)) equal zero. Here, \Omega^p(F) denotes the sheaf of holomorphic (''p'',0)-forms taking values on ''F''. The theorem states that, if the first Chern class of ''F'' is negative,H^q(M; \Omega^p(F)) = 0 \text q + p n. See also *Le Potier's vanishing theorem In algebraic geometry, Le Potier's vanishing theorem is an extension of the Kodaira vanishing theorem, on vector bundles. The theorem states the following In case of r = 1, and let E is an ample (or positive) line bundle on X, this theorem is eq ... References Original publications * * * Secondary sources Theorem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Donald C
Donald is a masculine given name derived from the Gaelic name ''Dòmhnall''.. This comes from the Proto-Celtic *''Dumno-ualos'' ("world-ruler" or "world-wielder"). The final -''d'' in ''Donald'' is partly derived from a misinterpretation of the Gaelic pronunciation by English speakers, and partly associated with the spelling of similar-sounding Germanic names, such as ''Ronald''. A short form of ''Donald'' is ''Don''. Pet forms of ''Donald'' include ''Donnie'' and ''Donny''. The feminine given name ''Donella'' is derived from ''Donald''. ''Donald'' has cognates in other Celtic languages: Modern Irish ''Dónal'' (anglicised as ''Donal'' and ''Donall'');. Scottish Gaelic ''Dòmhnall'', ''Domhnull'' and ''Dòmhnull''; Welsh '' Dyfnwal'' and Cumbric ''Dumnagual''. Although the feminine given name ''Donna'' is sometimes used as a feminine form of ''Donald'', the names are not etymologically related. Variations Kings and noblemen Domnall or Domhnall is the name of many ancie ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kunihiko Kodaira
was a Japanese mathematician known for distinguished work in algebraic geometry and the theory of complex manifolds, and as the founder of the Japanese school of algebraic geometers. He was awarded a Fields Medal in 1954, being the first Japanese national to receive this honour. Early years Kodaira was born in Tokyo. He graduated from the University of Tokyo in 1938 with a degree in mathematics and also graduated from the physics department at the University of Tokyo in 1941. During the war years he worked in isolation, but was able to master Hodge theory as it then stood. He obtained his PhD from the University of Tokyo in 1949, with a thesis entitled ''Harmonic fields in Riemannian manifolds''. He was involved in cryptographic work from about 1944, while holding an academic post in Tokyo. Institute for Advanced Study and Princeton University In 1949 he travelled to the Institute for Advanced Study in Princeton, New Jersey at the invitation of Hermann Weyl. He was subseque ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Raoul Bott
Raoul Bott (September 24, 1923 – December 20, 2005) was a Hungarian-American mathematician known for numerous basic contributions to geometry in its broad sense. He is best known for his Bott periodicity theorem, the Morse–Bott functions which he used in this context, and the Borel–Bott–Weil theorem. Early life Bott was born in Budapest, Hungary, the son of Margit Kovács and Rudolph Bott. His father was of Austrian descent, and his mother was of Hungarian Jewish descent; Bott was raised a Catholic by his mother and stepfather. Bott grew up in Czechoslovakia and spent his working life in the United States. His family emigrated to Canada in 1938, and subsequently he served in the Canadian Army in Europe during World War II. Career Bott later went to college at McGill University in Montreal, where he studied electrical engineering. He then earned a PhD in mathematics from Carnegie Mellon University in Pittsburgh in 1949. His thesis, titled ''Electrical Network Theory'', ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
René Thom
René Frédéric Thom (; 2 September 1923 – 25 October 2002) was a French mathematician, who received the Fields Medal in 1958. He made his reputation as a topologist, moving on to aspects of what would be called singularity theory; he became world-famous among the wider academic community and the educated general public for one aspect of this latter interest, his work as founder of catastrophe theory (later developed by Erik Christopher Zeeman). Life and career René Thom grow up in a modest family in Montbéliard, Doubs and obtained a Baccalauréat in 1940. After German invasion of France, his family took refuge in Switzerland and then in Lyon. In 1941 he moved to Paris to attend Lycée Saint-Louis and in 1943 he began studying mathematics at École Normale Supérieure, becoming agrégé in 1946. He received his PhD in 1951 from the University of Paris. His thesis, titled ''Espaces fibrés en sphères et carrés de Steenrod'' (''Sphere bundles and Steenrod squares''), was w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |