Split-octonions
   HOME
*



picture info

Split-octonions
In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signature (quadratic form), signatures of their quadratic forms differ: the split-octonions have a split signature (4,4) whereas the octonions have a positive-definite signature (8,0). Up to isomorphism, the octonions and the split-octonions are the only two 8-dimensional composition algebras over the real numbers. They are also the only two octonion algebras over the real numbers. Split-octonion algebras analogous to the split-octonions can be defined over any field (mathematics), field. Definition Cayley–Dickson construction The octonions and the split-octonions can be obtained from the Cayley–Dickson construction by defining a multiplication on pairs of quaternions. We introduce a new imaginary unit ℓ and write a pair of quaternions (''a'', ''b'') in the form ''a'' + ℓ'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cayley–Dickson Construction
In mathematics, the Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras, for example complex numbers, quaternions, and octonions. These examples are useful composition algebras frequently applied in mathematical physics. The Cayley–Dickson construction defines a new algebra as a Cartesian product of an algebra with itself, with multiplication defined in a specific way (different from the componentwise multiplication) and an involution known as conjugation. The product of an element and its conjugate (or sometimes the square root of this product) is called the norm. The symmetries of the real field disappear as the Cayley–Dickson construction is repeatedly applied: first losing order, then commutativity of multiplication, associativity of multipli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kronecker Delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 &\text i=j. \end or with use of Iverson brackets: \delta_ = =j, where the Kronecker delta is a piecewise function of variables and . For example, , whereas . The Kronecker delta appears naturally in many areas of mathematics, physics and engineering, as a means of compactly expressing its definition above. In linear algebra, the identity matrix has entries equal to the Kronecker delta: I_ = \delta_ where and take the values , and the inner product of vectors can be written as \mathbf\cdot\mathbf = \sum_^n a_\delta_b_ = \sum_^n a_ b_. Here the Euclidean vectors are defined as -tuples: \mathbf = (a_1, a_2, \dots, a_n) and \mathbf= (b_1, b_2, ..., b_n) and the last step is obtained by using the values of the Kronecker delta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Max August Zorn
Max August Zorn (; June 6, 1906 – March 9, 1993) was a German mathematician. He was an algebraist, group theorist, and numerical analyst. He is best known for Zorn's lemma, a method used in set theory that is applicable to a wide range of mathematical constructs such as vector spaces, and ordered sets amongst others. Zorn's lemma was first postulated by Kazimierz Kuratowski in 1922, and then independently by Zorn in 1935. Life and career Zorn was born in Krefeld, Germany. He attended the University of Hamburg. He received his PhD in April 1930 for a thesis on alternative algebras. He published his findings in ''Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg''. Zorn showed that split-octonions could be represented by a mixed-style of matrices called Zorn's vector-matrix algebra. Max Zorn was appointed to an assistant position at the University of Halle. However, he did not have the opportunity to work there for long as he was forced to leave Germany ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matrix (mathematics)
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, \begin1 & 9 & -13 \\20 & 5 & -6 \end is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a "-matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra. Therefore, the study of matrices is a large part of linear algebra, and most properties and operations of abstract linear algebra can be expressed in terms of matrices. For example, matrix multiplication represents composition of linear maps. Not all matrices are related to linear algebra. This is, in particular, the case in graph theory, of incidence matrices, and adjacency matrices. ''This article focuses on matrices related to linear algebra, and, unle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

G2 (mathematics)
In mathematics, G2 is the name of three simple Lie groups (a complex form, a compact real form and a split real form), their Lie algebras \mathfrak_2, as well as some algebraic groups. They are the smallest of the five exceptional simple Lie groups. G2 has rank 2 and dimension 14. It has two fundamental representations, with dimension 7 and 14. The compact form of G2 can be described as the automorphism group of the Octonion, octonion algebra or, equivalently, as the subgroup of SO(7) that preserves any chosen particular vector in its 8-dimensional Real representation, real spinor Group representation, representation (a spin representation). History The Lie algebra \mathfrak_2, being the smallest exceptional simple Lie algebra, was the first of these to be discovered in the attempt to classify simple Lie algebras. On May 23, 1887, Wilhelm Killing wrote a letter to Friedrich Engel (mathematician), Friedrich Engel saying that he had found a 14-dimensional simple Lie algebra, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simple Lie Group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. Together with the commutative Lie group of the real numbers, \mathbb, and that of the unit-magnitude complex numbers, U(1) (the unit circle), simple Lie groups give the atomic "blocks" that make up all (finite-dimensional) connected Lie groups via the operation of group extension. Many commonly encountered Lie groups are either simple or 'close' to being simple: for example, the so-called "special linear group" SL(''n'') of ''n'' by ''n'' matrices with determinant equal to 1 is simple for all ''n'' > 1. The first classification of simple Lie groups was by Wilhelm Killing, and this work was later perfected by Élie Cartan. The final classification is often referred to as Killing-Cartan classification. Definition Unfortun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Form (Lie Theory)
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra ''g''0 is called a real form of a complex Lie algebra ''g'' if ''g'' is the complexification of ''g''0: : \mathfrak\simeq\mathfrak_0\otimes_\mathbb. The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Real forms for Lie groups and algebraic groups Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups. In the case of linear algebraic groups, the notions of complexification and real form have a natural description in the language of algebraic geometry. Classification Just as complex semisimple Lie algebras are classified by Dynkin diagrams, the real forms of a semisimple Lie algebra are classified by Satake diagrams, which are obtained from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moufang Loop
Moufang is the family name of the following people: *Christoph Moufang (1817–1890), a Roman Catholic cleric *Ruth Moufang (1905–1977), a German mathematician, after whom several concepts in mathematics are named: ** Moufang–Lie algebra ** Moufang loop ** Moufang polygon ** Moufang plane *David Moufang David Moufang (born 1966, in Heidelberg, West Germany) is a German ambient techno musician. He records with his partner, Jonas Grossmann as Deep Space Network project and his solo releases as Move D.Profileat Allmusic guide His other projects inc ...
(born 1966), German ambient techno musician {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Artin's Theorem
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx) for all ''x'' and ''y'' in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. The associator Alternative algebras are so named because they are the algebras for which the associator is alternating. The associator is a trilinear map given by : ,y,z= (xy)z - x(yz). By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal. The left and right alternative identities for an algebra are equivalent toSchafer (1995) p. 27 : ,x,y= 0 : ,x,x= 0. Both of these identities together imply that : ,y,x= , x, x+ , y, x- , x+y, x+y= , x+y, -y= , x, -y- , y, y= 0 for all x and y. This is equivalent to the ''flexible identity''Schafer (1995) p. 28 :(xy)x = x(yx). The associator of an a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alternative Algebra
In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx) for all ''x'' and ''y'' in the algebra. Every associative algebra is obviously alternative, but so too are some strictly non-associative algebras such as the octonions. The associator Alternative algebras are so named because they are the algebras for which the associator is alternating. The associator is a trilinear map given by : ,y,z= (xy)z - x(yz). By definition, a multilinear map is alternating if it vanishes whenever two of its arguments are equal. The left and right alternative identities for an algebra are equivalent toSchafer (1995) p. 27 : ,x,y= 0 : ,x,x= 0. Both of these identities together imply that : ,y,x= , x, x+ , y, x- , x+y, x+y= , x+y, -y= , x, -y- , y, y= 0 for all x and y. This is equivalent to the ''flexible identity''Schafer (1995) p. 28 :(xy)x = x(yx). The associator of an al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moufang Identities
Moufang is the family name of the following people: *Christoph Moufang (1817–1890), a Roman Catholic cleric *Ruth Moufang (1905–1977), a German mathematician, after whom several concepts in mathematics are named: ** Moufang–Lie algebra ** Moufang loop ** Moufang polygon ** Moufang plane *David Moufang David Moufang (born 1966, in Heidelberg, West Germany) is a German ambient techno musician. He records with his partner, Jonas Grossmann as Deep Space Network project and his solo releases as Move D.Profileat Allmusic guide His other projects inc ...
(born 1966), German ambient techno musician {{surname ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]