HOME
*



picture info

Solid Of Revolution
In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line (the ''axis of revolution'') that lies on the same plane. The surface created by this revolution and which bounds the solid is the surface of revolution. Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroid multiplied by the figure's area ( Pappus's second centroid theorem). A representative disc is a three-dimensional volume element of a solid of revolution. The element is created by rotating a line segment (of length ) around some axis (located units away), so that a cylindrical volume of units is enclosed. Finding the volume Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration. To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Line Segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using a line above the symbols for the two endpoints (such as \overline). Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (geometry), edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a curve (such as a circle), a line segment is called a chord (geometry), chord (of that curve). In real or complex vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ungula
In solid geometry, an ungula is a region of a solid of revolution, cut off by a plane oblique to its base. A common instance is the spherical wedge. The term ''ungula'' refers to the hoof of a horse, an anatomical feature that defines a class of mammals called ungulates. The volume of an ungula of a cylinder was calculated by Grégoire de Saint Vincent. Two cylinders with equal radii and perpendicular axes intersect in four double ungulae. Blaise Pascalbr>Lettre de Dettonville a Carcavidescribes the onglet and double onglet, link from HathiTrust The bicylinder formed by the intersection had been measured by Archimedes in The Method of Mechanical Theorems, but the manuscript was lost until 1906. A historian of calculus described the role of the ungula in integral calculus: :Grégoire himself was primarily concerned to illustrate by reference to the ''ungula'' that volumetric integration could be reduced, through the ''ductus in planum'', to a consideration of geometric relat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surface Of Revolution
A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) around an axis of rotation. Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on whether or not the line is parallel to the axis. A circle that is rotated around any diameter generates a sphere of which it is then a great circle, and if the circle is rotated around an axis that does not intersect the interior of a circle, then it generates a torus which does not intersect itself (a ring torus). Properties The sections of the surface of revolution made by planes through the axis are called ''meridional sections''. Any meridional section can be considered to be the generatrix in the plane determined by it and the axis. The sections of the surface of revolution made by planes that are perpendicular to the axis are circles. Some special cases of hyperboloids (of either one or two sheets) and elliptic paraboloids are su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pseudosphere
In geometry, a pseudosphere is a surface with constant negative Gaussian curvature. A pseudosphere of radius is a surface in \mathbb^3 having curvature in each point. Its name comes from the analogy with the sphere of radius , which is a surface of curvature . The term was introduced by Eugenio Beltrami in his 1868 paper on models of hyperbolic geometry. __TOC__ Tractroid The same surface can be also described as the result of revolving a tractrix about its asymptote. For this reason the pseudosphere is also called tractroid. As an example, the (half) pseudosphere (with radius 1) is the surface of revolution of the tractrix parametrized by :t \mapsto \left( t - \tanh, \operatorname\, \right), \quad \quad 0 \le t < \infty. It is a singular space (the equator is a singularity), but away from the singularities, it has constant negative

picture info

Guldinus Theorem
In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of revolution. The theorems are attributed to Pappus of Alexandria and Paul Guldin. Pappus's statement of this theorem appears in print for the first time in 1659, but it was known before, by Kepler in 1615 and by Guldin in 1640. The first theorem The first theorem states that the surface area ''A'' of a surface of revolution generated by rotating a plane curve ''C'' about an axis external to ''C'' and on the same plane is equal to the product of the arc length ''s'' of ''C'' and the distance ''d'' traveled by the geometric centroid of ''C'': : A = sd. For example, the surface area of the torus with minor radius ''r'' and major radius ''R'' is : A = (2\pi r)(2\pi R) = 4\pi^2 R r. Proof A curve given by the positive function f(x) is bounded by two ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gabriel's Horn
Gabriel's horn (also called Torricelli's trumpet) is a particular geometric figure that has infinite surface area but finite volume. The name refers to the Christian tradition where the archangel Gabriel blows the horn to announce Judgment Day. The properties of this figure were first studied by Italian physicist and mathematician Evangelista Torricelli in the 17th century. These colourful informal names and the allusion to religion came along later. Torricelli's own name for it is to be found in the Latin title of his paper , written in 1643, a truncated acute hyperbolic solid, cut by a plane. Volume 1, part 1 of his published the following year included that paper and a second more orthodox (for the time) Archimedean proof of its theorem about the volume of a truncated acute hyperbolic solid. This name was used in mathematical dictionaries of the 18th century (including "Hyperbolicum Acutum" in Harris' 1704 dictionary and in Stone's 1726 one, and the Fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parametric Equation
In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters. Parametric equations are commonly used to express the coordinates of the points that make up a geometric object such as a curve or surface, in which case the equations are collectively called a parametric representation or parameterization (alternatively spelled as parametrisation) of the object. For example, the equations :\begin x &= \cos t \\ y &= \sin t \end form a parametric representation of the unit circle, where ''t'' is the parameter: A point (''x'', ''y'') is on the unit circle if and only if there is a value of ''t'' such that these two equations generate that point. Sometimes the parametric equations for the individual scalar output variables are combined into a single parametric equation in vectors: :(x, y)=(\cos t, \sin t). Parametric representations are generally nonunique (see the "Examples in two dimensions" section belo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paolo Uccello, Studio Di Vaso In Prospettiva 02
Paolo is both a given name and a surname, the Italian form of the name Paul. Notable people with the name include: People with the given name Paolo Art * Paolo Alboni (1671–1734), Italian painter *Paolo Abbate (1884–1973), Italian-American sculptor *Paolo Antonio Barbieri (1603–1649), Italian painter * Paolo Buggiani (born 1933), Italian contemporary artist * Paolo Carosone (born 1941), Italian painter and sculptor * Paolo Moranda Cavazzola (1486–1522), Italian painter *Paolo Farinati (c. 1524–c. 1606), Italian painter * Paolo Fiammingo (c. 1540–1596), Flemish painter * Paolo Domenico Finoglia (c. 1590–1645), Italian painter *Paolo Grilli (1857–1952), Italian sculptor and painter *Paolo de Matteis (1662–1728), Italian painter * Paolo Monaldi, Italian painter * Paolo Pagani (1655–1716), Italian painter *Paolo Persico (c. 1729–1796), Italian sculptor * Paolo Pino (1534–1565), Italian painter *Paolo Gerolamo Piola (1666–1724), Italian painter *Paolo Porpora ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fubini's Theorem
In mathematical analysis Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if the double integral yields a finite answer when the integrand is replaced by its absolute value. \, \iint\limits_ f(x,y)\,\text(x,y) = \int_X\left(\int_Y f(x,y)\,\texty\right)\textx=\int_Y\left(\int_X f(x,y) \, \textx \right) \texty \qquad \text \qquad \iint\limits_ , f(x,y), \,\text(x,y) <+\infty. Fubini's theorem implies that two iterated integrals are equal to the corresponding double integral across its integrands. Tonelli's theorem, introduced by in 1909, is similar, but applies to a non-negative measurable function rather than one integrable over their domains. A related theorem is oft ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cylindrical Coordinates
A cylindrical coordinate system is a three-dimensional coordinate system that specifies point positions by the distance from a chosen reference axis ''(axis L in the image opposite)'', the direction from the axis relative to a chosen reference direction ''(axis A)'', and the distance from a chosen reference plane perpendicular to the axis ''(plane containing the purple section)''. The latter distance is given as a positive or negative number depending on which side of the reference plane faces the point. The ''origin'' of the system is the point where all three coordinates can be given as zero. This is the intersection between the reference plane and the axis. The axis is variously called the ''cylindrical'' or ''longitudinal'' axis, to differentiate it from the ''polar axis'', which is the ray that lies in the reference plane, starting at the origin and pointing in the reference direction. Other directions perpendicular to the longitudinal axis are called ''radial lines''. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triple Integral
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, or . Integrals of a function of two variables over a region in \mathbb^2 (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in \mathbb^3 (real-number 3D space) are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration. Introduction Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the -axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where ) and the plane which contains its domain. If there are more variables, a multiple integral will yield hypervolumes of multidim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]