Skew Apeirogon
In geometry, an infinite skew polygon or skew apeirogon is an infinite 2-polytope with vertices that are not all colinear. Infinite zig-zag skew polygons are 2-dimensional infinite skew polygons with vertices alternating between two parallel lines. Infinite helical polygons are 3-dimensional infinite skew polygons with vertices on the surface of a cylinder. Regular infinite skew polygons exist in the Petrie polygons of the affine and hyperbolic Coxeter groups. They are constructed a single operator as the composite of all the reflections of the Coxeter group. Regular zig-zag skew apeirogons in two dimensions A regular zig-zag skew apeirogon has (2*∞), D∞d Frieze group symmetry. Regular zig-zag skew apeirogons exist as Petrie polygons of the three regular tilings of the plane: , , and . These regular zig-zag skew apeirogons have internal angles of 90°, 120°, and 60° respectively, from the regular polygons within the tilings: Isotoxal skew apeirogons in two dime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geometries ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Apeirogon Skew-equal
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order-7 Triangular Tiling
In geometry, the order-7 triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of . Hurwitz surfaces The symmetry group of the tiling is the (2,3,7) triangle group, and a fundamental domain for this action is the (2,3,7) Schwarz triangle. This is the smallest hyperbolic Schwarz triangle, and thus, by the proof of Hurwitz's automorphisms theorem, the tiling is the universal tiling that covers all Hurwitz surfaces (the Riemann surfaces with maximal symmetry group), giving them a triangulation whose symmetry group equals their automorphism group as Riemann surfaces. The smallest of these is the Klein quartic, the most symmetric genus 3 surface, together with a tiling by 56 triangles, meeting at 24 vertices, with symmetry group the simple group of order 168, known as PSL(2,7). The resulting surface can in turn be polyhedrally immersed into Euclidean 3-space, yielding the small cubicuboctahedron. The dual order-3 heptagonal tiling has the same symme ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Tilings Of The Hyperbolic Plane
This article lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces. The Schläfli symbol describes every regular tessellation of an ''n''-sphere, Euclidean and hyperbolic spaces. A Schläfli symbol describing an ''n''-polytope equivalently describes a tessellation of an (''n'' − 1)-sphere. In addition, the symmetry of a regular polytope or tessellation is expressed as a Coxeter group, which Coxeter expressed identically to the Schläfli symbol, except delimiting by square brackets, a notation that is called Coxeter notation. Another related symbol is the Coxeter-Dynkin diagram which represents a symmetry group with no rings, and the represents regular polytope or tessellation with a ring on the first node. For example, the cube has Schläfli symbol , and with its octahedral symmetry, ,3or , it is represented by Coxeter diagram . The regular polytopes are grouped by dimension and subgrouped by convex, nonconvex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P'' not on ''R'', in the plane containing both line ''R'' and point ''P'' there are at least two distinct lines through ''P'' that do not intersect ''R''. (Compare the above with Playfair's axiom, the modern version of Euclid's parallel postulate.) Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane. A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model. When geometers first realised they were working with something other than the standard Euclidean geometry, they described their geomet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quasiregular Skew Apeirogon In Truncated Tilings , in the context of representation theory
{{mathdab ...
In mathematics, quasiregular may refer to: * Quasiregular element, in the context of ring theory * Quasiregular map in analysis * Quasiregular polyhedron, in the context of geometry * Quasiregular representation : ''This article addresses the notion of quasiregularity in the context of representation theory and topological algebra. For other notions of quasiregularity in mathematics, see the disambiguation page quasiregular.'' In mathematics, quasireg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Apeirogon2d
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Apeirogon2c
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Apeirogon2b
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Apeirogon2a
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Apeirogon2-rectangle
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. * Isogonal trajectory in curve theory. * Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Isogonal Apeirogon2
Isogonal is a mathematical term which means "having similar angles". It occurs in several contexts: * Isogonal polygon, polyhedron, polytope or tiling. *Isogonal trajectory in curve theory. *Isogonal conjugate in triangle geometry. An Isogonal is also the name for a line connecting points at which the magnetic declination Magnetic declination, or magnetic variation, is the angle on the horizontal plane between magnetic north (the direction the north end of a magnetized compass needle points, corresponding to the direction of the Earth's magnetic field lines) and ... is the same. {{disambig Geometry ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |