Sketch (mathematics)
In the mathematical theory of categories, a sketch is a category ''D'', together with a set of cones intended to be limits and a set of cocones intended to be colimits. A model of the sketch in a category ''C'' is a functor :M:D\rightarrow C that takes each specified cone to a limit cone in ''C'' and each specified cocone to a colimit cocone in ''C''. Morphisms of models are natural transformations. Sketches are a general way of specifying structures on the objects of a category, forming a category-theoretic analog to the logical concept of a theory and its models A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c .... They allow multisorted models and models in any category. Sketches were invented in 1968 by Charles Ehresmann, using a different but equivalent definition. There are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. '' Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cone (category Theory)
In category theory, a branch of mathematics, the cone of a functor is an abstract notion used to define the limit of that functor. Cones make other appearances in category theory as well. Definition Let ''F'' : ''J'' → ''C'' be a diagram in ''C''. Formally, a diagram is nothing more than a functor from ''J'' to ''C''. The change in terminology reflects the fact that we think of ''F'' as indexing a family of objects and morphisms in ''C''. The category ''J'' is thought of as an "index category". One should consider this in analogy with the concept of an indexed family of objects in set theory. The primary difference is that here we have morphisms as well. Thus, for example, when ''J'' is a discrete category, it corresponds most closely to the idea of an indexed family in set theory. Another common and more interesting example takes ''J'' to be a span. ''J'' can also be taken to be the empty category, leading to the simplest cones. Let ''N'' be an object of ''C''. A cone fro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous function, continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a Linguistics, linguistic context; see function word. Definition Let ''C'' and ''D'' be category (mathematics), categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category. Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications. Definition If F and G are functors between the categories C and D , then a natural transformation \eta from F to G is a family of morphisms that satisfies two requirements. # The natural transformation must associate, to every object X in C, a morphism \eta_X : F ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theory (mathematical Logic)
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element \phi\in T of a deductively closed theory T is then called a theorem of the theory. In many deductive systems there is usually a subset \Sigma \subseteq T that is called "the set of axioms" of the theory T, in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms. General theories (as expressed in formal language) When defining theories for foundational purposes, additional care must be taken, as normal set-theoretic language may not be appropriate. The construction of a theory begins by specifying a definite non-empty ''conceptual class'' \mathcal, the element ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles Ehresmann
Charles Ehresmann (19 April 1905 – 22 September 1979) was a German-born French mathematician who worked in differential topology and category theory. He was an early member of the Bourbaki group, and is known for his work on the differential geometry of smooth fiber bundles, notably the introduction of the concepts of Ehresmann connection and of jet bundles, and for his seminar on category theory. Life Ehresmann was born in Strasbourg (at the time part of the German Empire) to an Alsatian-speaking family; his father was a gardener. After World War I, Alsace returned part of France and Ehresmann was taught in French at Lycée Kléber. Between 1924 and 1927 he studied at the École Normale Supérieure (ENS) in Paris and obtained agrégation in mathematics. After one year of military service, in 1928-29 he taught at a French school in Rabat, Morocco. He studied further at the University of Göttingen during the years 1930–31, and at Princeton University in 1932–34. He co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |