Sequence Transformation
In mathematics, a sequence transformation is an Operator (mathematics), operator acting on a given space of sequences (a sequence space). Sequence transformations include linear mappings such as convolution, discrete convolution with another sequence and resummation of a sequence and nonlinear mappings, more generally. They are commonly used for series acceleration, that is, for improving the rate of convergence of a slowly convergent sequence or series (mathematics), series. Sequence transformations are also commonly used to compute the antilimit of a divergent series numerically, and are used in conjunction with extrapolation methods. Classical examples for sequence transformations include the binomial transform, Möbius transform, and Stirling transform. Definitions For a given sequence :(s_n)_,\, and a sequence transformation \mathbf, the sequence resulting from transformation by \mathbf is :\mathbf( ( s_n ) ) = ( s'_n )_, where the elements of the transformed sequence a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aitken's Delta-squared Process
In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926 as part of an extension to Bernoulli's method. It is most useful for accelerating the convergence of a sequence that is converging linearly. A precursor form was known to Seki Kōwa (1642 – 1708) and applied to the rectification of the circle, i.e., to the calculation of π. Definition Given a sequence X = with n = 0, 1, 2, 3, \ldots, Aitken's delta-squared process associates to this sequence the new sequence A = (a_n) = , which can also be written as A = \left( x_n-\frac \right), with \Delta x_= x_-x_ and \Delta^2 x_n=x_n -2x_ + x_=\Delta x_-\Delta x_. Both are the same sequence algebraically but the latter has improved numerical stability in computational implementation. A /math> is ill-defined if the sequence \Delta^2 = (\Delt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Richardson Extrapolation
In numerical analysis, Richardson extrapolation is a Series acceleration, sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A^\ast = \lim_ A(h). In essence, given the value of A(h) for several values of h, we can estimate A^\ast by extrapolating the estimates to h=0. It is named after Lewis Fry Richardson, who introduced the technique in the early 20th century, though the idea was already known to Christiaan Huygens in Christiaan_Huygens#De_Circuli_Magnitudine_Inventa, his calculation of \pi. In the words of Garrett Birkhoff, Birkhoff and Gian-Carlo Rota, Rota, "its usefulness for practical computations can hardly be overestimated."Page 126 of Practical applications of Richardson extrapolation include Romberg integration, which applies Richardson extrapolation to the trapezoid rule, and the Bulirsch–Stoer algorithm for solving ordinary differential equations. General formula Notation Let A_0(h) be an approximation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Minimum Polynomial Extrapolation
In mathematics, minimum polynomial extrapolation is a sequence transformation used for convergence acceleration of vector sequences, due to Cabay and Jackson. While Aitken's method is the most famous, it often fails for vector sequences. An effective method for vector sequences is the minimum polynomial extrapolation. It is usually phrased in terms of the fixed point iteration: : x_=f(x_k). Given iterates x_1, x_2, ..., x_k in \mathbb R^n, one constructs the n \times (k-1) matrix U=(x_2-x_1, x_3-x_2, ..., x_k-x_) whose columns are the k-1 differences. Then, one computes the vector c=-U^+ (x_-x_k) where U^+ denotes the Moore–Penrose pseudoinverse In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element ''x'' is an element ''y'' that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inv ... of U. The number 1 is then appended to the end of c, and the extrapolated limit is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer Sequence
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci number, Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description . The sequence 0, 3, 8, 15, ... is formed according to the formula ''n''2 − 1 for the ''n''th term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, , even though we do not have a formula for the ''n''th perfect number. Computable and definable sequences An integer sequence is computable function, computable if th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Shanks Transformation
In numerical analysis, the Shanks transformation is a non-linear series acceleration method to increase the rate of convergence of a sequence. This method is named after Daniel Shanks, who rediscovered this sequence transformation in 1955. It was first derived and published by R. Schmidt in 1941. Formulation For a sequence \left\_ the series :A = \sum_^\infty a_m\, is to be determined. First, the partial sum A_n is defined as: :A_n = \sum_^n a_m\, and forms a new sequence \left\_. Provided the series converges, A_n will also approach the limit A as n\to\infty. The Shanks transformation S(A_n) of the sequence A_n is the new sequence defined byBender & Orszag (1999), pp. 368–375.Van Dyke (1975), pp. 202–205. :S(A_n) = \frac = A_ - \frac where this sequence S(A_n) often converges more rapidly than the sequence A_n. Further speed-up may be obtained by repeated use of the Shanks transformation, by computing S^2(A_n)=S(S(A_n)), S^3(A_n)=S(S(S(A_n))), etc. Note that the non ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Derivative
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point. The tangent line is the best linear approximation of the function near that input value. For this reason, the derivative is often described as the instantaneous rate of change, the ratio of the instantaneous change in the dependent variable to that of the independent variable. The process of finding a derivative is called differentiation. There are multiple different notations for differentiation. '' Leibniz notation'', named after Gottfried Wilhelm Leibniz, is represented as the ratio of two differentials, whereas ''prime notation'' is written by adding a prime mark. Higher order notations represent repeated differentiation, and they are usually denoted in Leib ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Difference Operator
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Scalar Multiplication
In mathematics, scalar multiplication is one of the basic operations defining a vector space in linear algebra (or more generally, a module in abstract algebra). In common geometrical contexts, scalar multiplication of a real Euclidean vector by a positive real number multiplies the magnitude of the vector without changing its direction. Scalar multiplication is the multiplication of a vector by a scalar (where the product is a vector), and is to be distinguished from inner product of two vectors (where the product is a scalar). Definition In general, if ''K'' is a field and ''V'' is a vector space over ''K'', then scalar multiplication is a function from ''K'' × ''V'' to ''V''. The result of applying this function to ''k'' in ''K'' and v in ''V'' is denoted ''k''v. Properties Scalar multiplication obeys the following rules ''(vector in boldface)'': * Additivity in the scalar: (''c'' + ''d'')v = ''c''v + ''d''v; * Additivity in the vector: ''c''(v + w) = ''c''v + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extrapolation Method
In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation, which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing meaningless results. Extrapolation may also mean extension of a wikt:method, method, assuming similar methods will be applicable. Extrapolation may also apply to human experience to project, extend, or expand known experience into an area not known or previously experienced. By doing so, one makes an assumption of the unknownExtrapolation entry at Webster's Dictionary, Merriam–Webster (for example, a driver may extrapolate road conditions beyond what is currently visible and t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divergent Sequence
As the positive integer n becomes larger and larger, the value n\times \sin\left(\tfrac1\right) becomes arbitrarily close to 1. We say that "the limit of the sequence n \times \sin\left(\tfrac1\right) equals 1." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the \lim symbol (e.g., \lim_a_n).Courant (1961), p. 29. If such a limit exists and is finite, the sequence is called convergent. A sequence that does not converge is said to be divergent. The limit of a sequence is said to be the fundamental notion on which the whole of mathematical analysis ultimately rests. Limits can be defined in any metric or topological space, but are usually first encountered in the real numbers. History The Greek philosopher Zeno of Elea is famous for formulating paradoxes that involve limiting processes. Leucippus, Democritus, Antiphon, Eudoxus, and Archimedes developed the method of exhaustion, which uses an inf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear map, bilinear product (mathematics), product. Thus, an algebra is an algebraic structure consisting of a set (mathematics), set together with operations of multiplication and addition and scalar multiplication by elements of a field (mathematics), field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras where associativity of multiplication is assumed, and non-associative algebras, where associativity is not assumed (but not excluded, either). Given an integer ''n'', the ring (mathematics), ring of real matrix, real square matrix, square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dime ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |