HOME
*





Separation Relation
In mathematics, a separation relation is a formal way to arrange a set of objects in an unoriented circle. It is defined as a quaternary relation ' satisfying certain axioms, which is interpreted as asserting that ''a'' and ''c'' separate ''b'' from ''d''. Whereas a linear order endows a set with a positive end and a negative end, a separation relation forgets not only which end is which, but also where the ends are located. In this way it is a final, further weakening of the concepts of a betweenness relation and a cyclic order. There is nothing else that can be forgotten: up to the relevant sense of interdefinability, these three relations are the only nontrivial reducts of the ordered set of rational numbers. Application The separation may be used in showing the real projective plane is a complete space. The separation relation was described with axioms in 1898 by Giovanni Vailati. * ' = ' * ' = ' * ' ⇒ ¬ ' * ' ∨ ' ∨ ' * ' ∧ ' ⇒ '. The relation of separation of points ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quaternary Relation
In mathematics, a finitary relation over sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples consisting of elements ''x''''i'' in ''X''''i''. Typically, the relation describes a possible connection between the elements of an ''n''-tuple. For example, the relation "''x'' is divisible by ''y'' and ''z''" consists of the set of 3-tuples such that when substituted to ''x'', ''y'' and ''z'', respectively, make the sentence true. The non-negative integer ''n'' giving the number of "places" in the relation is called the ''arity'', ''adicity'' or ''degree'' of the relation. A relation with ''n'' "places" is variously called an ''n''-ary relation, an ''n''-adic relation or a relation of degree ''n''. Relations with a finite number of places are called ''finitary relations'' (or simply ''relations'' if the context is clear). It is also possible to generalize the concept to ''infinitary relations'' with infinite sequences. An ''n''-ary relation over sets is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Order
In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a (strongly connected, formerly called total). Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but refers generally to some sort of totally ordered subsets of a given partially ordered set. An extension of a given partial order to a total order is called a linear extension of that partial order. Strict and non-strict total orders A on a set X is a strict partial or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Betweenness Relation
Ordered geometry is a form of geometry featuring the concept of intermediacy (or "betweenness") but, like projective geometry, omitting the basic notion of measurement. Ordered geometry is a fundamental geometry forming a common framework for affine, Euclidean, absolute, and hyperbolic geometry (but not for projective geometry). History Moritz Pasch first defined a geometry without reference to measurement in 1882. His axioms were improved upon by Peano (1889), Hilbert (1899), and Veblen (1904). Euclid anticipated Pasch's approach in definition 4 of ''The Elements'': "a straight line is a line which lies evenly with the points on itself". Primitive concepts The only primitive notions in ordered geometry are points ''A'', ''B'', ''C'', ... and the ternary relation of intermediacy 'ABC''which can be read as "''B'' is between ''A'' and ''C''". Definitions The ''segment'' ''AB'' is the set of points ''P'' such that 'APB'' The ''interval'' ''AB'' is the segment ''AB'' and it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Order
In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "". One does not say that east is "more clockwise" than west. Instead, a cyclic order is defined as a ternary relation , meaning "after , one reaches before ". For example, une, October, February but not une, February, October cf. picture. A ternary relation is called a cyclic order if it is cyclic, asymmetric, transitive, and connected. Dropping the "connected" requirement results in a partial cyclic order. A set with a cyclic order is called a cyclically ordered set or simply a cycle. Some familiar cycles are discrete, having only a finite number of elements: there are seven days of the week, four cardinal directions, twelve notes in the chromatic scale, and three plays in rock-paper-scissors. In a finite cycle, each element has a "next element" and a "previous element". There are also continu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reduct
In universal algebra and in model theory, a reduct of an algebraic structure is obtained by omitting some of the operation (mathematics), operations and relation (mathematics), relations of that structure. The opposite of "reduct" is "expansion." Definition Let ''A'' be an algebraic structure (in the sense of universal algebra) or a structure (mathematical logic), structure in the sense of model theory, organized as a set (mathematics), set ''X'' together with an indexed family of operations and relations φ''i'' on that set, with index set ''I''. Then the reduct of ''A'' defined by a subset ''J'' of ''I'' is the structure consisting of the set ''X'' and ''J''-indexed family of operations and relations whose ''j''-th operation or relation for ''j'' ∈ ''J'' is the ''j''-th operation or relation of ''A''. That is, this reduct is the structure ''A'' with the omission of those operations and relations φ''i'' for which ''i'' is not in ''J''. A structure ''A'' is an expansion of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncountable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Projective Plane
In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in passing through the origin. The plane is also often described topologically, in terms of a construction based on the Möbius strip: if one could glue the (single) edge of the Möbius strip to itself in the correct direction, one would obtain the projective plane. (This cannot be done in three-dimensional space without the surface intersecting itself.) Equivalently, gluing a disk along the boundary of the Möbius strip gives the projective plane. Topologically, it has Euler characteristic 1, hence a demigenus (non-orientable genus, Euler genus) of 1. Since the Möbius strip, in turn, can be constructed from a square by glui ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Space
In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the boundary). For instance, the set of rational numbers is not complete, because e.g. \sqrt is "missing" from it, even though one can construct a Cauchy sequence of rational numbers that converges to it (see further examples below). It is always possible to "fill all the holes", leading to the ''completion'' of a given space, as explained below. Definition Cauchy sequence A sequence x_1, x_2, x_3, \ldots in a metric space (X, d) is called Cauchy if for every positive real number r > 0 there is a positive integer N such that for all positive integers m, n > N, d\left(x_m, x_n\right) < r. Complete space A metric space (X, d) is complete if any of the following equivalent conditions are satisfied: :#Every

Giovanni Vailati
Giovanni Vailati (24 April 1863 – 14 May 1909) was an Italian proto-analytic philosopher, historian of science, and mathematician. Life Vailati was born in Crema, Lombardy, and studied engineering at the University of Turin. He went on to lecture in the history of mechanics there from 1896 to 1899, after working as assistant to Giuseppe Peano and Vito Volterra. He resigned his university post in 1899 so that he could pursue his independent studies, making a living from high-school mathematics teaching. During his lifetime he became internationally known, his writings having been translated into English, French, and Polish, though he was largely forgotten after his death in Rome. He was rediscovered in the late 1950s. He did not publish any complete books, but left about 200 essays and reviews across a range of academic disciplines. Philosophy Vailati's view of philosophy was that it provided a preparation and the tools for scientific work. For that reason, and because phil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British mathematician, philosopher, logician, and public intellectual. He had a considerable influence on mathematics, logic, set theory, linguistics, artificial intelligence, cognitive science, computer science and various areas of analytic philosophy, especially philosophy of mathematics, philosophy of language, epistemology, and metaphysics.Stanford Encyclopedia of Philosophy"Bertrand Russell" 1 May 2003. He was one of the early 20th century's most prominent logicians, and a founder of analytic philosophy, along with his predecessor Gottlob Frege, his friend and colleague G. E. Moore and his student and protégé Ludwig Wittgenstein. Russell with Moore led the British "revolt against idealism". Together with his former teacher A. N. Whitehead, Russell wrote ''Principia Mathematica'', a milestone in the development of classical logic, and a major attempt to reduce the whole ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principles Of Mathematics
''The Principles of Mathematics'' (''PoM'') is a 1903 book by Bertrand Russell, in which the author presented his famous paradox and argued his thesis that mathematics and logic are identical. The book presents a view of the foundations of mathematics and Meinongianism and has become a classic reference. It reported on developments by Giuseppe Peano, Mario Pieri, Richard Dedekind, Georg Cantor, and others. In 1905 Louis Couturat published a partial French translation that expanded the book's readership. In 1937 Russell prepared a new introduction saying, "Such interest as the book now possesses is historical, and consists in the fact that it represents a certain stage in the development of its subject." Further editions were printed in 1938, 1951, 1996, and 2009. Contents ''The Principles of Mathematics'' consists of 59 chapters divided into seven parts: indefinables in mathematics, number, quantity, order, infinity and continuity, space, matter and motion. In chapter on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]