Residual Spectrum
   HOME
*





Residual Spectrum
The spectrum of a linear operator T that operates on a Banach space X (a fundamental concept of functional analysis) consists of all scalars \lambda such that the operator T-\lambda does not have a bounded inverse on X. The spectrum has a standard decomposition into three parts: * a point spectrum, consisting of the eigenvalues of T; * a continuous spectrum, consisting of the scalars that are not eigenvalues but make the range of T-\lambda a proper dense subset of the space; * a residual spectrum, consisting of all other scalars in the spectrum. This decomposition is relevant to the study of differential equations, and has applications to many branches of science and engineering. A well-known example from quantum mechanics is the explanation for the discrete spectral lines and the continuous band in the light emitted by excited atoms of hydrogen. Decomposition into point spectrum, continuous spectrum, and residual spectrum For bounded Banach space operators Let '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (functional Analysis)
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is said to be in the spectrum of a bounded linear operator T if T-\lambda I is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its spectrum, and may have no eigenvalues. For example, consider the right shift operator ''R'' on the Hilbert space ℓ2, :(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots). This has no eigenvalues, since if ''Rx''=''λx'' then by expanding this expression we see ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bijective
In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function is a one-to-one (injective) and onto (surjective) mapping of a set ''X'' to a set ''Y''. The term ''one-to-one correspondence'' must not be confused with ''one-to-one function'' (an injective function; see figures). A bijection from the set ''X'' to the set ''Y'' has an inverse function from ''Y'' to ''X''. If ''X'' and ''Y'' are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Partial Isometry
In functional analysis a partial isometry is a linear map between Hilbert spaces such that it is an isometry on the orthogonal complement of its kernel. The orthogonal complement of its kernel is called the initial subspace and its range is called the final subspace. Partial isometries appear in the polar decomposition. General The concept of partial isometry can be defined in other equivalent ways. If ''U'' is an isometric map defined on a closed subset ''H''1 of a Hilbert space ''H'' then we can define an extension ''W'' of ''U'' to all of ''H'' by the condition that ''W'' be zero on the orthogonal complement of ''H''1. Thus a partial isometry is also sometimes defined as a closed partially defined isometric map. Partial isometries (and projections) can be defined in the more abstract setting of a semigroup with involution; the definition coincides with the one herein. In finite-dimensional vector spaces, a matrix A is a partial isometry if and only if A^* A is the p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shift Operator
In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift operators are examples of linear operators, important for their simplicity and natural occurrence. The shift operator action on functions of a real variable plays an important role in harmonic analysis, for example, it appears in the definitions of almost periodic functions, positive-definite functions, derivatives, and convolution. Shifts of sequences (functions of an integer variable) appear in diverse areas such as Hardy spaces, the theory of abelian varieties, and the theory of symbolic dynamics, for which the baker's map is an explicit representation. Definition Functions of a real variable The shift operator (where ) takes a function on R to its translation , : T^t f(x) = f_t(x) = f(x+t)~. A practical operational calculus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reflexive Space
In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space (TVS) for which the canonical evaluation map from X into its bidual (which is the strong dual of the strong dual of X) is an isomorphism of TVSs. Since a normable TVS is reflexive if and only if it is semi-reflexive, every normed space (and so in particular, every Banach space) X is reflexive if and only if the canonical evaluation map from X into its bidual is surjective; in this case the normed space is necessarily also a Banach space. In 1951, R. C. James discovered a Banach space, now known as James' space, that is reflexive but is nevertheless isometrically isomorphic to its bidual (any such isomorphism is thus necessarily the canonical evaluation map). Reflexive spaces play an important role in the general theory of locally convex TVSs and in the theory of Banach spaces in particular. Hilbert spaces are prominent examples of reflexive Banach spaces. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Operator
In mathematics, especially functional analysis, a normal operator on a complex Hilbert space ''H'' is a continuous linear operator ''N'' : ''H'' → ''H'' that commutes with its hermitian adjoint ''N*'', that is: ''NN*'' = ''N*N''. Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are * unitary operators: ''N*'' = ''N−1'' * Hermitian operators (i.e., self-adjoint operators): ''N*'' = ''N'' * Skew-Hermitian operators: ''N*'' = −''N'' * positive operators: ''N'' = ''MM*'' for some ''M'' (so ''N'' is self-adjoint). A normal matrix is the matrix expression of a normal operator on the Hilbert space C''n''. Properties Normal operators are characterized by the spectral theorem. A compact normal operator (in particular, a normal operator on a finite-dimensional linear space) is unitarily diagonalizable. Let T be a bounded operator. The following are equivalent. * T is normal. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Theorem
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix (mathematics), matrix can be Diagonalizable matrix, diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective. Examples of operators to which the spectral theorem appl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the ''L''1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that the sequence converges pointwise to a function f and is dominated by some integrable function g in the sense that : , f_n(x), \le g(x) for all numbers ''n'' in the index set of the sequence and all points x\in S. Then ''f'' is integrable (in the Lebesgue sense) and : \lim_ \int_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Essential Range
In mathematics, particularly measure theory, the essential range, or the set of essential values, of a function is intuitively the 'non-negligible' range of the function: It does not change between two functions that are equal almost everywhere. One way of thinking of the essential range of a function is the set on which the range of the function is 'concentrated'. Formal definition Let (X,,\mu) be a measure space, and let (Y,) be a topological space. For any (,\sigma())-measurable f:X\to Y, we say the essential range of f to mean the set :\operatorname(f) = \left\. Equivalently, \operatorname(f)=\operatorname(f_*\mu), where f_*\mu is the pushforward measure onto \sigma() of \mu under f and \operatorname(f_*\mu) denotes the support of f_*\mu. Essential values We sometimes use the phrase "essential value of f" to mean an element of the essential range of f. Special cases of common interest ''Y'' = C Say (Y,) is \mathbb C equipped with its usual topology. Then the essential range ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE