Real Simple Lie Algebra
   HOME



picture info

Real Simple Lie Algebra
In algebra, a simple Lie algebra is a Lie algebra that is non-abelian and contains no nonzero proper ideals. The classification of real simple Lie algebras is one of the major achievements of Wilhelm Killing and Élie Cartan. A direct sum of simple Lie algebras is called a semisimple Lie algebra. A simple Lie group is a connected Lie group whose Lie algebra is simple. Complex simple Lie algebras A finite-dimensional simple complex Lie algebra is isomorphic to either of the following: \mathfrak_n \mathbb, \mathfrak_n \mathbb, \mathfrak_ \mathbb (classical Lie algebras) or one of the five exceptional Lie algebras. To each finite-dimensional complex semisimple Lie algebra \mathfrak, there exists a corresponding diagram (called the Dynkin diagram) where the nodes denote the simple roots, the nodes are jointed (or not jointed) by a number of lines depending on the angles between the simple roots and the arrows are put to indicate whether the roots are longer or shorter. The Dy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, ,y= xy - yx . Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: every Lie group gives rise to a Lie algebra, which is the tangent space at the identity. (In this case, the Lie bracket measures the failure of commutativity for the Lie group.) Conversely, to any finite-di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classical Lie Algebra
The classical Lie algebras are finite-dimensional Lie algebras over a field which can be classified into four types A_n , B_n , C_n and D_n , where for \mathfrak(n) the general linear Lie algebra and I_n the n \times n identity matrix: * A_n := \mathfrak(n+1) = \ , the ''special linear Lie algebra''; * B_n := \mathfrak(2n+1) = \ , the ''odd orthogonal Lie algebra''; * C_n := \mathfrak(2n) = \ , the ''symplectic Lie algebra''; and * D_n := \mathfrak(2n) = \ , the ''even orthogonal Lie algebra''. Except for the low-dimensional cases D_1 = \mathfrak(2) and D_2 = \mathfrak(4) , the classical Lie algebras are simple. The Moyal algebra is an infinite-dimensional Lie algebra that contains all classical Lie algebras as subalgebras. See also * Simple Lie algebra * Classical group In mathematics, the classical groups are defined as the special linear groups over the reals \mathbb, the complex numbers \mathbb and the quaternions \mathbb together with special automo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Lie Group
In mathematics, a simple Lie group is a connected non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. Together with the commutative Lie group of the real numbers, \mathbb, and that of the unit-magnitude complex numbers, U(1) (the unit circle), simple Lie groups give the atomic "building blocks" that make up all (finite-dimensional) connected Lie groups via the operation of group extension. Many commonly encountered Lie groups are either simple or 'close' to being simple: for example, the so-called "special linear group" SL(''n'', \mathbb) of ''n'' by ''n'' matrices with determinant equal to 1 is simple for all odd ''n'' > 1, when it is isomorphic to the projective special linear group. The first classification of simple Lie groups was by Wilhelm Killing, and this work was later perfected by Élie Cartan. The final class ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Table Of Lie Groups
This article gives a table of some common Lie groups and their associated Lie algebras. The following are noted: the topological properties of the group (dimension; connectedness; compactness; the nature of the fundamental group; and whether or not they are simply connected) as well as on their algebraic properties ( abelian; simple; semisimple). For more examples of Lie groups and other related topics see the list of simple Lie groups; the Bianchi classification of groups of up to three dimensions; see classification of low-dimensional real Lie algebras for up to four dimensions; and the list of Lie group topics. Real Lie groups and their algebras Column legend * Cpt: Is this group ''G'' compact? (Yes or No) * \pi_0: Gives the group of components of ''G''. The order of the component group gives the number of connected components. The group is connected if and only if the component group is trivial (denoted by 0). * \pi_1: Gives the fundamental group of ''G'' whenever ''G' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Satake Diagram
In the mathematics, mathematical study of Lie algebras and Lie groups, Satake diagrams are a generalization of Dynkin diagram, Dynkin diagrams that classify involutions of root systems that are relevant in several contexts. They were introduced in and were originally used to classify real form (Lie theory), real simple Lie algebras. Additionally, they also classify symmetric pairs (\mathfrak,\mathfrak) of Lie algebras, where \mathfrak is semisimple. More concretely, given a complex semisimple Lie algebra \mathfrak, the Satake diagrams made from \mathfrak's Dynkin diagram classify the involutions of \mathfrak's root system that extend to an anti-linear involutive automorphism of \mathfrak. The fixed points \mathfrak^\sigma are then a real form of \mathfrak. The same Satake diagrams also classify the involutions of \mathfrak's root system that extend to a (linear) involutive automorphism of \mathfrak. The fixed points \mathfrak form a complex Lie subalgebra of \mathfrak, so that ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conjugate Of A Complex Lie Algebra
Conjugation or conjugate may refer to: Linguistics *Grammatical conjugation, the modification of a verb from its basic form *Emotive conjugation or Russell's conjugation, the use of loaded language Mathematics *Complex conjugation, the change of sign of the imaginary part of a complex number *Conjugate (square roots), the change of sign of a square root in an expression *Conjugate element (field theory), a generalization of the preceding conjugations to roots of a polynomial of any degree *Conjugate transpose, the complex conjugate of the transpose of a matrix * Harmonic conjugate in complex analysis * Conjugate (graph theory), an alternative term for a line graph, i.e. a graph representing the edge adjacencies of another graph *In group theory, various notions are called conjugation: **Inner automorphism, a type of conjugation homomorphism **Conjugacy class in group theory, related to matrix similarity in linear algebra **Conjugation (group theory), the image of an element und ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Dynkin Diagrams
Finite may refer to: * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album ''Invisible Empires'' See also * Finite number (other) * Finite part (other) * Finite map (other) * Finite presentation (other) * Finite type (other) Finite type refers to several related concepts in mathematics: * Algebra of finite type, an associative algebra with finitely many generators **Morphism of finite type, a morphism of schemes with underlying morphisms on affine opens given by algebr ... * * Nonfinite (other) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynkin Diagram
In the Mathematics, mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of Graph (discrete mathematics), graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed graph, directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected graph, undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exceptional Lie Algebra
In mathematics, an exceptional Lie algebra is a complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ... simple Lie algebra whose Dynkin diagram is of exceptional (nonclassical) type. There are exactly five of them: \mathfrak_2, \mathfrak_4, \mathfrak_6, \mathfrak_7, \mathfrak_8; their respective dimensions are 14, 52, 78, 133, 248. The corresponding diagrams are: * G2 : * F4 : * E6 : * E7 : * E8 : In contrast, simple Lie algebras that are not exceptional are called classical Lie algebras (there are infinitely many of them). Construction There is no simple universally accepted way to construct exceptional Lie algebras; in fact, they were discovered only in the process of the classification program. Here are some constructions: *§ 22.1-2 of give a detailed construction ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Lie Algebra
In mathematics, a complex Lie algebra is a Lie algebra over the complex numbers. Given a complex Lie algebra \mathfrak, its conjugate \overline is a complex Lie algebra with the same underlying real vector space but with i = \sqrt acting as -i instead. As a real Lie algebra, a complex Lie algebra \mathfrak is trivially isomorphic to its conjugate. A complex Lie algebra is isomorphic to its conjugate if and only if it admits a real form (and is said to be defined over the real numbers). Real form Given a complex Lie algebra \mathfrak, a real Lie algebra \mathfrak_0 is said to be a real form of \mathfrak if the complexification \mathfrak_0 \otimes_\mathbb is isomorphic to \mathfrak. A real form \mathfrak_0 is abelian (resp. nilpotent, solvable, semisimple) if and only if \mathfrak is abelian (resp. nilpotent, solvable, semisimple). On the other hand, a real form \mathfrak_0 is simple if and only if either \mathfrak is simple or \mathfrak is of the form \mathfrak \times \overli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, ,y= xy - yx . Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: every Lie group gives rise to a Lie algebra, which is the tangent space at the identity. (In this case, the Lie bracket measures the failure of commutativity for the Lie group.) Conversely, to any finite-dimensiona ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]