Ray Class Field
   HOME
*





Ray Class Field
In mathematics, a ray class field is an abelian extension of a global field associated with a ray class group of ideal classes or idele classes. Every finite abelian extension of a number field is contained in one of its ray class fields. The term "ray class group" is a translation of the German term "Strahlklassengruppe". Here "Strahl" is the German for a ray, and often means the positive real line, which appears in the positivity conditions defining ray class groups. uses "Strahl" to mean a certain group of ideals defined using positivity conditions, and uses "Strahlklasse" to mean a coset of this group. There are two slightly different notions of what a ray class field is, as authors differ in how the infinite primes are treated. History Weber introduced ray class groups in 1897. Takagi proved the existence of the corresponding ray class fields in about 1920. Chevalley reformulated the definition of ray class groups in terms of ideles in 1933. Ray class fields using idea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Extension
In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvable if its Galois group is solvable, i.e., if the group can be decomposed into a series of normal extensions of an abelian group. Every finite extension of a finite field is a cyclic extension. Class field theory provides detailed information about the abelian extensions of number fields, function fields of algebraic curves over finite fields, and local fields. There are two slightly different definitions of the term cyclotomic extension. It can mean either an extension formed by adjoining roots of unity to a field, or a subextension of such an extension. The cyclotomic fields are examples. A cyclotomic extension, under either definition, is always abelian. If a field ''K'' contains a primitive ''n''-th root of unity and the ''n''-th ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers is denoted or \mathbb and is sometimes called "the reals". The adjective ''real'' in this context was introduced in the 17th century by René Descartes to distinguish real numbers, associated with physical reality, from imaginary numbers (such as the square roots of ), which seemed like a theoretical contrivance unrelated to physical reality. The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Class Field
In algebraic number theory, the Hilbert class field ''E'' of a number field ''K'' is the maximal abelian unramified extension of ''K''. Its degree over ''K'' equals the class number of ''K'' and the Galois group of ''E'' over ''K'' is canonically isomorphic to the ideal class group of ''K'' using Frobenius elements for prime ideals in ''K''. In this context, the Hilbert class field of ''K'' is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of ''K''. That is, every real embedding of ''K'' extends to a real embedding of ''E'' (rather than to a complex embedding of ''E''). Examples *If the ring of integers of ''K'' is a unique factorization domain, in particular if K = \mathbb , then ''K'' is its own Hilbert class field. *Let K = \mathbb(\sqrt) of discriminant -15. The field L = \mathbb(\sqrt, \sqrt) has discriminant 225=(-15)^2 and so is an everywhere unramified extension of ''K'', and it is abelian. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Roots Of Unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation :z^n = 1. Unless otherwise specified, the roots of unity may be taken to be complex numbers (incl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Archimedean Place
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History of algebraic number theory Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncountable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Real Place
Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) * ''Real'' (Belinda Carlisle album) (1993) * ''Real'' (Gorgon City EP) (2013) * ''Real'' (IU EP) (2010) * ''Real'' (Ivy Queen album) (2004) * ''Real'' (Mika Nakashima album) (2013) * ''Real'' (Ednita Nazario album) (2007) * ''Real'' (Jodie Resther album), a 2000 album by Jodie Resther * ''Real'' (Michael Sweet album) (1995) * ''Real'' (The Word Alive album) (2014) * ''Real'', a 2002 album by Israel Houghton recording as Israel & New Breed Songs * "Real" (Goo Goo Dolls song) (2008) * "Real" (Gorgon City song) (2013) * "Real" (Plumb song) (2004) * "Real" (Vivid song) (2012) * "Real" (James Wesley song) (2010) * "Real", a song by Kendrick Lamar from ''Good Kid, M.A.A.D City'' * "Real", a song by NF from ''Therapy Session'' * "Re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Congruence (manifolds)
In the theory of smooth manifolds, a congruence is the set of integral curves defined by a nonvanishing vector field defined on the manifold. Congruences are an important concept in general relativity, and are also important in parts of Riemannian geometry. A motivational example The idea of a congruence is probably better explained by giving an example than by a definition. Consider the smooth manifold R². Vector fields can be specified as ''first order linear partial differential operators'', such as :\vec = ( x^2 - y^2 ) \, \partial_x + 2 \, x y \, \partial_y These correspond to a system of ''first order linear ordinary differential equations'', in this case :\dot = x^2 - y^2,\; \dot = 2 \, x y where dot denotes a derivative with respect to some (dummy) parameter. The solutions of such systems are ''families of parameterized curves'', in this case : x(\lambda) = \frac : y(\lambda) = \frac This family is what is often called a ''congruence of curves'', or just ''congrue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Place
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History of algebraic number theory Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two integers ''x'' and ''y'' such that their sum, and the sum of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a + bi, where and are real numbers. Because no real number satisfies the above equation, was called an imaginary number by René Descartes. For the complex number a+bi, is called the , and is called the . The set of complex numbers is denoted by either of the symbols \mathbb C or . Despite the historical nomenclature "imaginary", complex numbers are regarded in the mathematical sciences as just as "real" as the real numbers and are fundamental in many aspects of the scientific description of the natural world. Complex numbers allow solutions to all polynomial equations, even those that have no solutions in real numbers. More precisely, the fundamental theorem of algebra asserts that every non-constant polynomial equation with real or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Global Field
In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: * Algebraic number field: A finite extension of \mathbb *Global function field: The function field of an algebraic curve over a finite field, equivalently, a finite extension of \mathbb_q(T), the field of rational functions in one variable over the finite field with q=p^n elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s. Formal definitions A ''global field'' is one of the following: ;An algebraic number field An algebraic number field ''F'' is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus ''F'' is a field that contains Q and has finite dimension when considered as a vector space over Q. ;The function field of an algebraic curve over a finite field A function field of a variety is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Principal Ideal
In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset P generated by a single element x \in P, which is to say the set of all elements less than or equal to x in P. The remainder of this article addresses the ring-theoretic concept. Definitions * a ''left principal ideal'' of R is a subset of R given by Ra = \ for some element a, * a ''right principal ideal'' of R is a subset of R given by aR = \ for some element a, * a ''two-sided principal ideal'' of R is a subset of R given by RaR = \ for some element a, namely, the set of all finite sums of elements of the form ras. While this definition for two-sided principal ideal may seem more complicated than the others, it is necessary to ensure that the ideal remains closed under addition. If R is a commuta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]