Ramified Cover
   HOME
*





Ramified Cover
In mathematics, a branched covering is a map that is almost a covering map, except on a small set. In topology In topology, a map is a ''branched covering'' if it is a covering map everywhere except for a nowhere dense set known as the branch set. Examples include the map from a wedge of circles to a single circle, where the map is a homeomorphism on each circle. In algebraic geometry In algebraic geometry, the term branched covering is used to describe morphisms f from an algebraic variety V to another one W, the two dimensions being the same, and the typical fibre of f being of dimension 0. In that case, there will be an open set W' of W (for the Zariski topology) that is dense in W, such that the restriction of f to W' (from V' = f^(W') to W', that is) is unramified. Depending on the context, we can take this as local homeomorphism for the strong topology, over the complex numbers, or as an étale morphism in general (under some slightly stronger hypotheses, on flatness ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Extension
In field theory, a branch of algebra, an algebraic field extension E/F is called a separable extension if for every \alpha\in E, the minimal polynomial of \alpha over is a separable polynomial (i.e., its formal derivative is not the zero polynomial, or equivalently it has no repeated roots in any extension field).Isaacs, p. 281 There is also a more general definition that applies when is not necessarily algebraic over . An extension that is not separable is said to be ''inseparable''. Every algebraic extension of a field of characteristic zero is separable, and every algebraic extension of a finite field is separable.Isaacs, Theorem 18.11, p. 281 It follows that most extensions that are considered in mathematics are separable. Nevertheless, the concept of separability is important, as the existence of inseparable extensions is the main obstacle for extending many theorems proved in characteristic zero to non-zero characteristic. For example, the fundamental theorem of Galois ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Polynomial
In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as \left(x - \sqrt\right)\left(x + \sqrt\right) if it is considered as a polynomial with real coefficients. One says that the polynomial is irreducible over the integers but not over the reals. Polynomial irreducibility can be considered for polynomials with coefficients in an integral domain, and there are two common definitions. Most often, a p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Separable Polynomial
In mathematics, a polynomial ''P''(''X'') over a given field ''K'' is separable if its roots are distinct in an algebraic closure of ''K'', that is, the number of distinct roots is equal to the degree of the polynomial. This concept is closely related to square-free polynomial. If ''K'' is a perfect field then the two concepts coincide. In general, ''P''(''X'') is separable if and only if it is square-free over any field that contains ''K'', which holds if and only if ''P''(''X'') is coprime to its formal derivative ''D'' ''P''(''X''). Older definition In an older definition, ''P''(''X'') was considered separable if each of its irreducible factors in ''K'' 'X''is separable in the modern definition.N. Jacobson, Basic Algebra I, p. 233 In this definition, separability depended on the field ''K''; for example, any polynomial over a perfect field would have been considered separable. This definition, although it can be convenient for Galois theory, is no longer in use. Separabl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Plane Curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation can be restricted to the affine algebraic plane curve of equation . These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered. More generally, an algebraic curve is an algebraic variety of dimension one. Equivalently, an algebraic curve is an algebraic variety that is birationally equivalent to an algebraic plane curve. If the curve is contained in an affine space or a projective space, one can take a projection for such ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Algebraically Closed Field
In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because the polynomial equation ''x''2 + 1 = 0  has no solution in real numbers, even though all its coefficients (1 and 0) are real. The same argument proves that no subfield of the real field is algebraically closed; in particular, the field of rational numbers is not algebraically closed. Also, no finite field ''F'' is algebraically closed, because if ''a''1, ''a''2, ..., ''an'' are the elements of ''F'', then the polynomial (''x'' − ''a''1)(''x'' − ''a''2) ⋯ (''x'' − ''a''''n'') + 1 has no zero in ''F''. By contrast, the fundamental theorem of algebra states that the field of complex numbers is algebraically closed. Another example of an algebraicall ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperelliptic Curve
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus ''g'' > 1, given by an equation of the form y^2 + h(x)y = f(x) where ''f''(''x'') is a polynomial of degree ''n'' = 2''g'' + 1 > 4 or ''n'' = 2''g'' + 2 > 4 with ''n'' distinct roots, and ''h''(''x'') is a polynomial of degree 3. Therefore, in giving such an equation to specify a non-singular curve, it is almost always assumed that a non-singular model (also called a smooth completion), equivalent in the sense of birational geometry, is meant. To be more precise, the equation defines a quadratic extension of C(''x''), and it is that function field that is meant. The singular point at infinity can be removed (since this is a curve) by the normalization ( integral closure) process. It turns out that after doing this, there is an open cover of the curve by two affine charts: the one already given by y^2 = f(x) and another one given by w^2 = v^f(1/v) . The glueing maps between the two charts are given by (x, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Field Of An Algebraic Variety
In algebraic geometry, the function field of an algebraic variety ''V'' consists of objects which are interpreted as rational functions on ''V''. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. Definition for complex manifolds In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions. The function field of a variety is then the set of all meromorphic functions on the variety. (Like all meromorphic functions, these take their values in \mathbb\cup\infty.) Together with the operations of addition and multiplication of functions, this is a field in the sense of algebra. For the Riemann sphere, which is the variety \mathbb^1 over the complex numbers, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Extension
In mathematics, an algebraic extension is a field extension such that every element of the larger field is algebraic over the smaller field ; that is, if every element of is a root of a non-zero polynomial with coefficients in . A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. The algebraic extensions of the field \Q of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory. Another example of a common algebraic extension is the extension \Complex/\R of the real numbers by the complex numbers. Some properties All transcendental extensions are of infinite degree. This in turn implies that all finite extensions are algebraic. The converse is not true however: there are infinite extensions which are algebraic. For instance, the field of all algebraic numbers is an infinite algebraic extension of the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kummer Extension
In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of ''n''th roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer ''n'' – and therefore belong to abstract algebra. The theory of cyclic extensions of the field ''K'' when the characteristic of ''K'' does divide ''n'' is called Artin–Schreier theory. Kummer theory is basic, for example, in class field theory and in general in understanding abelian extensions; it says that in the presence of enough roots of unity, cyclic extensions can be understood in terms of extracting roots. The main burden in class field theory is to dispense with extra roots of unity ('descending' back to smaller fields); which is somet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface), and some point in it, and all the loops both starting and ending at this point— paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if one can be deformed into the other without breakin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]