Relative Canonical Model
   HOME
*





Relative Canonical Model
In the mathematical field of algebraic geometry, the relative canonical model of a singular variety of a mathematical object where X is a particular canonical variety that maps to X, which simplifies the structure. Description The precise definition is: If f:Y\to X is a resolution define the adjunction sequence to be the sequence of subsheaves f_*\omega_Y^; if \omega_X is invertible f_*\omega_Y^=I_n\omega_X^ where I_n is the higher adjunction ideal. Problem. Is \oplus_n f_*\omega_Y^ finitely generated? If this is true then Proj \oplus_n f_*\omega_Y^ \to X is called the ''relative canonical model'' of Y, or the ''canonical blow-up'' of X. Some basic properties were as follows: The relative canonical model was independent of the choice of resolution. Some integer multiple r of the canonical divisor of the relative canonical model was Cartier and the number of exceptional components where this agrees with the same multiple of the canonical divisor of Y is also independe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Singular Variety
In the mathematical field of algebraic geometry, a singular point of an algebraic variety is a point that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth. Definition A plane curve defined by an implicit equation :F(x,y)=0, where is a smooth function is said to be ''singular'' at a point if the Taylor series of has order at least at this point. The reason for this is that, in differential calculus, the tangent at the point of such a curve is defined by the equation :(x-x_0)F'_x(x_0,y_0) + (y-y_0)F'_y(x_0,y_0)=0, whose left-hand side is the term of degree one of the Taylor expansion. Thus, if this term is zero, the tangent m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Object
A mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces. Mathematical objects can be very complex; for example, theorems, proofs, and even theories are considered as mathematical objects in proof theory. The ontological status of mathematical objects has been the subject of much investigation and debate by philosophers of mathematics. Burgess, John, and Rosen, Gideon, 1997. ''A Subject with No Object: Strategies for Nominalistic Reconstrual of Mathematics''. Oxford University Press. List of ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Canonical Form
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and which allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a ''unique'' representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness. The canonical form of a positive integer in decimal representation is a finite sequence of digits that does not begin with zero. More generally, for a class of objects on which an equivalence relation is defined, a canonical form consists in the choice of a specific object in each class. For example: *Jordan normal form is a canonical form for matrix similarity. *The row echelon form is a canonical form, when one considers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Resolution Of Singularities
In algebraic geometry, the problem of resolution of singularities asks whether every algebraic variety ''V'' has a resolution, a non-singular variety ''W'' with a proper birational map ''W''→''V''. For varieties over fields of characteristic 0 this was proved in Hironaka (1964), while for varieties over fields of characteristic ''p'' it is an open problem in dimensions at least 4. Definitions Originally the problem of resolution of singularities was to find a nonsingular model for the function field of a variety ''X'', in other words a complete non-singular variety ''X′'' with the same function field. In practice it is more convenient to ask for a different condition as follows: a variety ''X'' has a resolution of singularities if we can find a non-singular variety ''X′'' and a proper birational map from ''X′'' to ''X''. The condition that the map is proper is needed to exclude trivial solutions, such as taking ''X′'' to be the subvariety of non- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Crepant Resolution
In algebraic geometry, a crepant resolution of a singularity is a resolution that does not affect the canonical class of the manifold. The term "crepant" was coined by by removing the prefix "dis" from the word "discrepant", to indicate that the resolutions have no discrepancy in the canonical class. The crepant resolution conjecture of states that the orbifold cohomology of a Gorenstein orbifold is isomorphic to a semiclassical limit of the quantum cohomology of a crepant resolution. In 2 dimensions, crepant resolutions of complex Gorenstein quotient singularities ( du Val singularities) always exist and are unique, in 3 dimensions they exist but need not be unique as they can be related by flops, and in dimensions greater than 3 they need not exist. A substitute for crepant resolutions which always exists is a terminal model. Namely, for every variety ''X'' over a field of characteristic zero such that ''X'' has canonical singularities (for example, rational Gorenstein s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Canonical Singularities
In mathematics, canonical singularities appear as singularities of the canonical model of a projective variety, and terminal singularities are special cases that appear as singularities of minimal models. They were introduced by . Terminal singularities are important in the minimal model program because smooth minimal models do not always exist, and thus one must allow certain singularities, namely the terminal singularities. Definition Suppose that ''Y'' is a normal variety such that its canonical class ''K''''Y'' is Q-Cartier, and let ''f'':''X''→''Y'' be a resolution of the singularities of ''Y''. Then :\displaystyle K_X = f^*(K_Y)+\sum_i a_iE_i where the sum is over the irreducible exceptional divisors, and the ''a''''i'' are rational numbers, called the discrepancies. Then the singularities of ''Y'' are called: :terminal if ''a''''i'' > 0 for all ''i'' :canonical if ''a''''i'' ≥ 0 for all ''i'' :log terminal if ''a''''i'' > −1 for all ''i'' :log canonical if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Model Program
In algebraic geometry, the minimal model program is part of the birational classification of algebraic varieties. Its goal is to construct a birational model of any complex projective variety which is as simple as possible. The subject has its origins in the classical birational geometry of surfaces studied by the Italian school, and is currently an active research area within algebraic geometry. Outline The basic idea of the theory is to simplify the birational classification of varieties by finding, in each birational equivalence class, a variety which is "as simple as possible". The precise meaning of this phrase has evolved with the development of the subject; originally for surfaces, it meant finding a smooth variety X for which any birational morphism f\colon X \to X' with a smooth surface X' is an isomorphism. In the modern formulation, the goal of the theory is as follows. Suppose we are given a projective variety X, which for simplicity is assumed non-singular. There are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shigefumi Mori
is a Japanese mathematician, known for his work in algebraic geometry, particularly in relation to the classification of three-folds. Career Mori completed his Ph.D. titled "The Endomorphism Rings of Some Abelian Varieties" under Masayoshi Nagata at Kyoto University in 1978. He was visiting professor at Harvard University during 1977–1980, the Institute for Advanced Study in 1981–82, Columbia University 1985–87 and the University of Utah for periods during 1987–89 and again during 1991–92. He has been a professor at Kyoto University since 1990. Work He generalized the classical approach to the classification of algebraic surfaces to the classification of algebraic three-folds. The classical approach used the concept of minimal model (birational geometry), minimal models of algebraic surfaces. He found that the concept of minimal model (birational geometry), minimal models can be applied to three-folds as well if we allow some Singularity (mathematics), singularities on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]