HOME



picture info

Ramified Covering
In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two ''branches'' differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. In complex analysis In complex analysis, the basic model can be taken as the ''z'' → ''z''''n'' mapping in the complex plane, near ''z'' = 0. This is the standard local picture in Riemann surface theory, of ramification of order ''n''. It occurs for example in the Riemann–Hurwitz formula for the effect of mappings on the genus. In algebraic topology In a covering map the Euler–Poincaré characteristic should multiply by the number of sheets; ramification can therefore be detected by some dropping from that. The ''z'' → ''z''''n'' mapping shows this as a local pattern: if we exclude ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Schematic Depiction Of Ramification
A schematic, or schematic diagram, is a designed representation of the elements of a system using abstract, graphic symbols rather than realistic pictures. A schematic usually omits all details that are not relevant to the key information the schematic is intended to convey, and may include oversimplified elements in order to make this essential meaning easier to grasp, as well as additional organization of the information. For example, a subway map intended for passengers may represent a subway station with a dot. The dot is not intended to resemble the actual station at all but aims to give the viewer information without unnecessary visual clutter. A schematic diagram of a chemical process uses symbols in place of detailed representations of the vessels, piping, valves, pumps, and other equipment that compose the system, thus emphasizing the functions of the individual elements and the interconnections among them and suppresses their physical details. In an electronic circuit d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with a ''complex structure'', that is an atlas (topology), atlas of chart (topology), charts to the open unit disc in the complex coordinate space \mathbb^n, such that the transition maps are Holomorphic function, holomorphic. The term "complex manifold" is variously used to mean a complex manifold in the sense above (which can be specified as an ''integrable'' complex manifold) or an almost complex manifold, ''almost'' complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth manifold, smooth and complex manifolds have very different flavors: compact space, compact complex manifolds are much closer to algebraic variety, algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be Embedding, embedded as a smooth subma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Relative Discriminant
In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified. The discriminant is one of the most basic invariants of a number field, and occurs in several important analytic formulas such as the functional equation of the Dedekind zeta function of K, and the analytic class number formula for K. A theorem of Hermite states that there are only finitely many number fields of bounded discriminant, however determining this quantity is still an open problem, and the subject of current research. The discriminant of K can be referred to as the absolute discriminant of K to distinguish it from the relative discriminant of an extension K/L of number fields. The latter is an ideal in the ring of integers of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Heinrich M
Heinrich may refer to: People * Heinrich (given name), a given name (including a list of people with the name) * Heinrich (surname), a surname (including a list of people with the name) *Hetty (given name), a given name (including a list of people with the name) Places * Heinrich (crater), a lunar crater * Heinrich-Hertz-Turm, a telecommunication tower and landmark of Hamburg, Germany Other uses * Heinrich event, a climatic event during the last ice age * Heinrich (card game), a north German card game * Heinrich (farmer), participant in the German TV show a ''Farmer Wants a Wife'' * Heinrich Greif Prize, an award of the former East German government * Heinrich Heine Prize, the name of two different awards * Heinrich Mann Prize, a literary award given by the Berlin Academy of Art * Heinrich Tessenow Medal, an architecture prize established in 1963 * Heinrich Wieland Prize, an annual award in the fields of chemistry, biochemistry and physiology * Heinrich, known as Haida in Ja ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Richard Dedekind
Julius Wilhelm Richard Dedekind (; ; 6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His best known contribution is the definition of real numbers through the notion of Dedekind cut. He is also considered a pioneer in the development of modern set theory and of the philosophy of mathematics known as ''logicism''. Life Dedekind's father was Julius Levin Ulrich Dedekind, an administrator of Collegium Carolinum in Braunschweig. His mother was Caroline Henriette Dedekind (née Emperius), the daughter of a professor at the Collegium. Richard Dedekind had three older siblings. As an adult, he never used the names Julius Wilhelm. He was born in Braunschweig (often called "Brunswick" in English), which is where he lived most of his life and died. His body rests at Braunschweig Main Cemetery. He first attended the Collegium Carol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nilpotent
In mathematics, an element x of a ring (mathematics), ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term, along with its sister Idempotent (ring theory), idempotent, was introduced by Benjamin Peirce in the context of his work on the classification of algebras. Examples *This definition can be applied in particular to square matrix, square matrices. The matrix :: A = \begin 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & 0 & 0 \end :is nilpotent because A^3=0. See nilpotent matrix for more. * In the factor ring \Z/9\Z, the equivalence class of 3 is nilpotent because 32 is Congruence relation, congruent to 0 Modular arithmetic, modulo 9. * Assume that two elements a and b in a ring R satisfy ab=0. Then the element c=ba is nilpotent as \beginc^2&=(ba)^2\\ &=b(ab)a\\ &=0.\\ \end An example with matrices (for ''a'', ''b''):A = \begin 0 & 1\\ 0 & 1 \end, \;\; B =\begin 0 & 1\\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Closure
In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over a subring ''A'' of ''B'' if ''b'' is a root of some monic polynomial over ''A''. If ''A'', ''B'' are fields, then the notions of "integral over" and of an "integral extension" are precisely " algebraic over" and " algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial). The case of greatest interest in number theory is that of complex numbers integral over Z (e.g., \sqrt or 1+i); in this context, the integral elements are usually called algebraic integers. The algebraic integers in a finite extension field ''k'' of the rationals Q form a subring of ''k'', called the ring of integers of ''k'', a central object of study in algebraic number theory. In this article, the term '' ring'' will be understood to mean ''commutative ring'' with a multiplicative identity. Definition Let B be a ring and let A \subset B be a subring of B. An el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Ideal
In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all the multiple (mathematics), multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary ideal, primary and semiprime ideal, semiprime. Prime ideals for commutative rings Definition An ideal (ring theory), ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, that is, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind the rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. These operations make the field into an abelian group under addition, and they make the nonzero elements of the field into another abelian group under multiplicat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ring Of Integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often denoted by O_K or \mathcal O_K. Since any integer belongs to K and is an integral element of K, the ring \mathbb is always a subring of O_K. The ring of integers \mathbb is the simplest possible ring of integers. Namely, \mathbb=O_ where \mathbb is the field of rational numbers. And indeed, in algebraic number theory the elements of \mathbb are often called the "rational integers" because of this. The next simplest example is the ring of Gaussian integers \mathbb /math>, consisting of complex numbers whose real and imaginary parts are integers. It is the ring of integers in the number field \mathbb(i) of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Number Theory
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and Algebraic function field, function fields. These properties, such as whether a ring (mathematics), ring admits unique factorization, the behavior of ideal (ring theory), ideals, and the Galois groups of field (mathematics), fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations. History Diophantus The beginnings of algebraic number theory can be traced to Diophantine equations, named after the 3rd-century Alexandrian mathematician, Diophantus, who studied them and developed methods for the solution of some kinds of Diophantine equations. A typical Diophantine problem is to find two in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]