Queap
   HOME
*



picture info

Queap
In computer science, a queap is a priority queue data structure. The data structure allows insertions and deletions of arbitrary elements, as well as retrieval of the highest-priority element. Each deletion takes amortized time logarithmic in the number of items that have been in the structure for a longer time than the removed item. Insertions take constant amortized time. The data structure consists of a doubly linked list and a 2–4 tree data structure, each modified to keep track of its minimum-priority element. The basic operation of the structure is to keep newly inserted elements in the doubly linked list, until a deletion would remove one of the list items, at which point they are all moved into the 2–4 tree. The 2–4 tree stores its elements in insertion order, rather than the more conventional priority-sorted order. Both the data structure and its name were devised by John Iacono and Stefan Langerman. Description A queap is a priority queue that inserts element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Queap
In computer science, a queap is a priority queue data structure. The data structure allows insertions and deletions of arbitrary elements, as well as retrieval of the highest-priority element. Each deletion takes amortized time logarithmic in the number of items that have been in the structure for a longer time than the removed item. Insertions take constant amortized time. The data structure consists of a doubly linked list and a 2–4 tree data structure, each modified to keep track of its minimum-priority element. The basic operation of the structure is to keep newly inserted elements in the doubly linked list, until a deletion would remove one of the list items, at which point they are all moved into the 2–4 tree. The 2–4 tree stores its elements in insertion order, rather than the more conventional priority-sorted order. Both the data structure and its name were devised by John Iacono and Stefan Langerman. Description A queap is a priority queue that inserts element ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Data Structure
In computer science, a data structure is a data organization, management, and storage format that is usually chosen for efficient access to data. More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, i.e., it is an algebraic structure about data. Usage Data structures serve as the basis for abstract data types (ADT). The ADT defines the logical form of the data type. The data structure implements the physical form of the data type. Different types of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, relational databases commonly use B-tree indexes for data retrieval, while compiler implementations usually use hash tables to look up identifiers. Data structures provide a means to manage large amounts of data efficiently for uses such as large databases and internet indexing services. Usually, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

2–3–4 Tree
In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: * a 2-node has one data element, and if internal has two child nodes; * a 3-node has two data elements, and if internal has three child nodes; * a 4-node has three data elements, and if internal has four child nodes; Image:2-3-4-tree-2-node.svg, 2-node Image:2-3-4-tree-3-node.svg, 3-node Image:2-3-4-tree-4-node.svg, 4-node 2–3–4 trees are B-trees of order 4; like B-trees in general, they can search, insert and delete in O(log ''n'') time. One property of a 2–3–4 tree is that all external nodes are at the same depth. 2–3–4 trees are isomorphic to red–black trees, meaning that they are equivalent data structures. In other words, for every 2–3–4 tree, there exists at least one and at most one red–bla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stefan Langerman
Stefan Langerman false Swarzberg is a Belgian computer scientist and mathematician whose research topics include computational geometry, data structures, and recreational mathematics. He is professor and co-head of the algorithms research group at the Université libre de Bruxelles (ULB) with Jean Cardinal. He is a director of research for the Belgian Fonds de la Recherche Scientifique (FRS–FNRS). Education and career Langerman left his Belgian secondary school at age 13 and was admitted by examination to the École polytechnique of the Université libre de Bruxelles. He studied civil engineering there for two years before switching his course of study to computer science, and earning a licenciate. After working as a user interface programmer for the Center for Digital Molecular Biophysics in Gembloux, he moved to the US for graduate study at Rutgers University, where he earned a master's degree and then in 2001 a PhD. His doctoral dissertation, ''Algorithms and Data Structur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Queue (data Structure)
In computer science, a queue is a collection of entities that are maintained in a sequence and can be modified by the addition of entities at one end of the sequence and the removal of entities from the other end of the sequence. By convention, the end of the sequence at which elements are added is called the back, tail, or rear of the queue, and the end at which elements are removed is called the head or front of the queue, analogously to the words used when people line up to wait for goods or services. The operation of adding an element to the rear of the queue is known as ''enqueue'', and the operation of removing an element from the front is known as ''dequeue''. Other operations may also be allowed, often including a ''peek'' or ''front'' operation that returns the value of the next element to be dequeued without dequeuing it. The operations of a queue make it a first-in-first-out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algorithmic Information Theory
Algorithmic information theory (AIT) is a branch of theoretical computer science that concerns itself with the relationship between computation and information of computably generated objects (as opposed to stochastically generated), such as strings or any other data structure. In other words, it is shown within algorithmic information theory that computational incompressibility "mimics" (except for a constant that only depends on the chosen universal programming language) the relations or inequalities found in information theory. According to Gregory Chaitin, it is "the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously." Besides the formalization of a universal measure for irreducible information content of computably generated objects, some main achievements of AIT were to show that: in fact algorithmic complexity follows (in the self-delimited case) the same inequalities (except for a constant) tha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Heaps (data Structures)
Heap or HEAP may refer to: Computing and mathematics * Heap (data structure), a data structure commonly used to implement a priority queue * Heap (mathematics), a generalization of a group * Heap (programming) (or free store), an area of memory for dynamic memory allocation * Heapsort, a comparison-based sorting algorithm * Heap overflow, a type of buffer overflow that occurs in the heap data area * Sorites paradox, also known as the paradox of the heap Other uses * Heap (surname) * Heaps (surname) * Heap leaching, an industrial mining process * Heap (comics), a golden-age comic book character * Heap, Bury, a former district in England * "The Heap" (''Fargo''), a 2014 television episode * High Explosive, Armor-Piercing, ammunition and ordnance * Holocaust Education and Avoidance Pod, an idea in Neal Stephenson's novel ''Cryptonomicon'' See also * Skandha, Buddhist concept describing the aggregated contents of mental activity * Beap or bi-parental heap, a data structure * Treap, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amortized Analysis
In computer science, amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. As a conclusion: "Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis." For a given operation of an algorithm, certain situations (e.g., input parametrizations or data structure contents) may imply a significant cost in resources, whereas other situations may not be as costly. The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations. This may include accounting for different types of input, length of the input, and other factors that affect its performance. History Amortized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Doubly Linked List
In computer science, a doubly linked list is a linked data structure that consists of a set of sequentially linked record (computer science), records called node (computer science), nodes. Each node contains three field (computer science), fields: two link fields (reference (computer science), references to the previous and to the next node in the sequence of nodes) and one data field. The beginning and ending nodes' previous and next links, respectively, point to some kind of terminator, typically a sentinel node or null pointer, null, to facilitate traversal of the list. If there is only one sentinel node, then the list is circularly linked via the sentinel node. It can be conceptualized as two linked list, singly linked lists formed from the same data items, but in opposite sequential orders. The two node links allow traversal of the list in either direction. While adding or removing a node in a doubly linked list requires changing more links than the same operations on a sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Priority Queue
In computer science, a priority queue is an abstract data-type similar to a regular queue or stack data structure in which each element additionally has a ''priority'' associated with it. In a priority queue, an element with high priority is served before an element with low priority. In some implementations, if two elements have the same priority, they are served according to the order in which they were enqueued; in other implementations ordering of elements with the same priority remains undefined. While coders often implement priority queues with heaps, they are conceptually distinct from heaps. A priority queue is a concept like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or with a variety of other methods such as an unordered array. Operations A priority queue must at least support the following operations: * ''is_empty'': check whether the queue has no elements. * ''insert_wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amortized Analysis
In computer science, amortized analysis is a method for analyzing a given algorithm's complexity, or how much of a resource, especially time or memory, it takes to execute. The motivation for amortized analysis is that looking at the worst-case run time can be too pessimistic. Instead, amortized analysis averages the running times of operations in a sequence over that sequence. As a conclusion: "Amortized analysis is a useful tool that complements other techniques such as worst-case and average-case analysis." For a given operation of an algorithm, certain situations (e.g., input parametrizations or data structure contents) may imply a significant cost in resources, whereas other situations may not be as costly. The amortized analysis considers both the costly and less costly operations together over the whole sequence of operations. This may include accounting for different types of input, length of the input, and other factors that affect its performance. History Amortized ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]