Quasi-complete
   HOME





Quasi-complete
In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete if every closed and bounded subset is complete. This concept is of considerable importance for non- metrizable TVSs. Properties * Every quasi-complete TVS is sequentially complete. * In a quasi-complete locally convex space, the closure of the convex hull of a compact subset is again compact. * In a quasi-complete Hausdorff TVS, every precompact subset is relatively compact. * If is a normed space and is a quasi-complete locally convex TVS then the set of all compact linear maps of into is a closed vector subspace of L_b(X;Y). * Every quasi-complete infrabarrelled space is barreled. * If is a quasi-complete locally convex space then every weakly bounded subset of the continuous dual space is strongly bounded. * A quasi-complete nuclear space then has the Heine–Borel property. Examples and sufficient conditions Every complete TVS is quasi-complete. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semi-reflexive Space
In the area of mathematics known as functional analysis, a semi-reflexive space is a locally convex topological vector space (TVS) ''X'' such that the canonical evaluation map from ''X'' into its bidual (which is the strong dual of ''X'') is bijective. If this map is also an isomorphism of TVSs then it is called reflexive. Semi-reflexive spaces play an important role in the general theory of locally convex TVSs. Since a normable TVS is semi-reflexive if and only if it is reflexive, the concept of semi-reflexivity is primarily used with TVSs that are not normable. Definition and notation Brief definition Suppose that is a topological vector space (TVS) over the field \mathbb (which is either the real or complex numbers) whose continuous dual space, X^, separates points on (i.e. for any x \in X there exists some x^ \in X^ such that x^(x) \neq 0). Let X^_b and X^_ both denote the strong dual of , which is the vector space X^ of continuous linear functionals on endowed with th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nuclear Space
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite-dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite-dimensional Euclidean spaces. They were introduced by Alexander Grothendieck. The topology on nuclear spaces can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector spaces whose elements are "smooth" in some sense tend to be nuclear spaces; a typical example of a nuclear space is the set of smooth functions on a compact manifold. All finite-dimensional vector spaces are nuclear. There are no Banach spaces that are nuclear, except for the finite-dimensional ones. In practice a sort of converse to this is often true: if a "naturally occurring" topological vector space is a Banach space, then there is a good chance that it is nuclear. Original motivation: The Schwartz ker ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequentially Complete Space
In mathematics, specifically in topology and functional analysis, a subspace of a uniform space is said to be sequentially complete or semi-complete if every Cauchy sequence in converges to an element in . is called sequentially complete if it is a sequentially complete subset of itself. Sequentially complete topological vector spaces Every topological vector space is a uniform space so the notion of sequential completeness can be applied to them. Properties of sequentially complete topological vector spaces #A bounded sequentially complete disk in a Hausdorff topological vector space is a Banach disk. #A Hausdorff locally convex space that is sequentially complete and bornological is ultrabornological. Examples and sufficient conditions #Every complete space is sequentially complete but not conversely. #For metrizable spaces, sequential completeness implies completeness. Together with the previous property, this means sequential completeness and completeness a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




LB-space
In mathematics, an ''LB''-space, also written (''LB'')-space, is a topological vector space X that is a locally convex inductive limit of a countable inductive system (X_n, i_) of Banach spaces. This means that X is a direct limit of a direct system \left( X_n, i_ \right) in the category of locally convex topological vector spaces and each X_n is a Banach space. If each of the bonding maps i_ is an embedding of TVSs then the ''LB''-space is called a strict ''LB''-space. This means that the topology induced on X_n by X_ is identical to the original topology on X_n. Some authors (e.g. Schaefer) define the term "''LB''-space" to mean "strict ''LB''-space." Definition The topology on X can be described by specifying that an absolutely convex subset U is a neighborhood of 0 if and only if U \cap X_n is an absolutely convex neighborhood of 0 in X_n for every n. Properties A strict ''LB''-space is complete, barrelled, and bornological (and thus ultrabornological). Example ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Locally Convex
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals. Fréchet spaces are locally convex topological vector spaces that are completely metrizable (with a choice of complete metric). They are generalizations of Banach spaces, which are complete vector spaces with respect to a metric generated by a norm. History Metrizable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infrabarrelled Space
In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infra barreled) if every bounded barrel is a neighborhood of the origin. Similarly, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds. Definition A subset B of a topological vector space (TVS) X is called bornivorous if it absorbs all bounded subsets of X; that is, if for each bounded subset S of X, there exists some scalar r such that S \subseteq r B. A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed. A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Cha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Strong Dual Space
In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of X, where this topology is denoted by b\left(X^, X\right) or \beta\left(X^, X\right). The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, X^, has the strong dual topology, X^_b or X^_ may be written. Strong dual topology Throughout, all vector spaces will be assumed to be over the field \mathbb of either the real numbers \R or complex numbers \C. Definition from a dual system Let (X, Y, \langle \cdot, \cdot \rangle) be a dual pair of vector spaces over the field \mathbb of real numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compact Linear Map
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved question ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normed Space
The Ateliers et Chantiers de France (ACF, Workshops and Shipyards of France) was a major shipyard that was established in Dunkirk, France, in 1898. The shipyard boomed in the period before World War I (1914–18), but struggled in the inter-war period. It was badly damaged during World War II (1939–45). In the first thirty years after the war the shipyard again experienced a boom and employed up to 3,000 workers making oil tankers, and then liquid natural gas tankers. Demand dropped off in the 1970s and 1980s. In 1972 the shipyard became Chantiers de France-Dunkerque, and in 1983 merged with others yards to become part of Chantiers du Nord et de la Mediterranee, or Normed. The shipyard closed in 1987. Foundation (1898–99) The Ateliers et Chantiers de France (ACF) company was officially founded on 6 July 1898 by a consortium of six shipping brokers, the Dunkirk chamber of commerce and the state. The state asked that the shipyard be able to build steamships and also four-masted ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]