Quantum Supremacy
   HOME
*





Quantum Supremacy
In quantum computing, quantum supremacy or quantum advantage is the goal of demonstrating that a programmable quantum device can solve a problem that no classical computer can solve in any feasible amount of time (irrespective of the usefulness of the problem). Conceptually, quantum supremacy involves both the engineering task of building a powerful quantum computer and the computational-complexity-theoretic task of finding a problem that can be solved by that quantum computer and has a superpolynomial speedup over the best known or possible classical algorithm for that task. The term was coined by John Preskill in 2012, but the concept of a quantum computational advantage, specifically for simulating quantum systems, dates back to Yuri Manin's (1980) and Richard Feynman's (1981) proposals of quantum computing. Examples of proposals to demonstrate quantum supremacy include the boson sampling proposal of Aaronson and Arkhipov, D-Wave's specialized frustrated cluster loop problems, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Computing
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers may be too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deutsch–Jozsa Algorithm
The Deutsch–Jozsa algorithm is a deterministic quantum algorithm proposed by David Deutsch and Richard Jozsa in 1992 with improvements by Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca in 1998. Although of little current practical use, it is one of the first examples of a quantum algorithm that is exponentially faster than any possible deterministic classical algorithm. The Deutsch–Jozsa problem is specifically designed to be easy for a quantum algorithm and hard for any deterministic classical algorithm. It is a black box problem that can be solved efficiently by a quantum computer with no error, whereas a deterministic classical computer would need a exponential number of queries to the black box to solve the problem. More formally, it yields an oracle relative to which EQP, the class of problems that can be solved exactly in polynomial time on a quantum computer, and P are different. Since the problem is easy to solve on a probabilistic classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Google
Google LLC () is an American multinational technology company focusing on search engine technology, online advertising, cloud computing, computer software, quantum computing, e-commerce, artificial intelligence, and consumer electronics. It has been referred to as "the most powerful company in the world" and one of the world's most valuable brands due to its market dominance, data collection, and technological advantages in the area of artificial intelligence. Its parent company Alphabet is considered one of the Big Five American information technology companies, alongside Amazon, Apple, Meta, and Microsoft. Google was founded on September 4, 1998, by Larry Page and Sergey Brin while they were PhD students at Stanford University in California. Together they own about 14% of its publicly listed shares and control 56% of its stockholder voting power through super-voting stock. The company went public via an initial public offering (IPO) in 2004. In 2015, Google was reor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20  tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. Nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Michele Mosca
Michele Mosca is co-founder and deputy director of the Institute for Quantum Computing at the University of Waterloo, researcher and founding member of the Perimeter Institute for Theoretical Physics, and professor of mathematics in the department oCombinatorics & Optimizationat the University of Waterloo. He has held a Tier 2 Canada Research Chair in Quantum Computation since January 2002, and has been a scholar for the Canadian Institute for Advanced Research since September 2003.Michele Mosca biography
at the Institute for Quantum Computing.
Awards and Honours
from Mosca's IQC homepage.
Mosca's principal



Jonathan A
Jonathan may refer to: *Jonathan (name), a masculine given name Media * ''Jonathan'' (1970 film), a German film directed by Hans W. Geißendörfer * ''Jonathan'' (2016 film), a German film directed by Piotr J. Lewandowski * ''Jonathan'' (2018 film), an American film directed by Bill Oliver * ''Jonathan'' (Buffy comic), a 2001 comic book based on the ''Buffy the Vampire Slayer'' television series * ''Jonathan'' (TV show), a Welsh-language television show hosted by ex-rugby player Jonathan Davies People and biblical figures Bible * Jonathan (1 Samuel), son of King Saul of Israel and friend of David, in the Books of Samuel *Jonathan (Judges), in the Book of Judges Judaism *Jonathan Apphus, fifth son of Mattathias and leader of the Hasmonean dynasty of Judea from 161 to 143 BCE *Rabbi Jonathan, 2nd century *Jonathan (High Priest), a High Priest of Israel in the 1st century Other *Jonathan (apple), a variety of apple * "Jonathan" (song), a 2015 song by French singer and songwrit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Grover's Algorithm
In quantum computing, Grover's algorithm, also known as the quantum search algorithm, refers to a quantum algorithm for unstructured search that finds with high probability the unique input to a black box function that produces a particular output value, using just O(\sqrt) evaluations of the function, where N is the size of the function's domain. It was devised by Lov Grover in 1996. The analogous problem in classical computation cannot be solved in fewer than O(N) evaluations (because, on average, one has to check half of the domain to get a 50% chance of finding the right input). Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani proved that any quantum solution to the problem needs to evaluate the function \Omega(\sqrt) times, so Grover's algorithm is asymptotically optimal. Since classical algorithms for NP-complete problems require exponentially many steps, and Grover's algorithm provides at most a quadratic speedup over the classical solution for un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lov Grover
Lov Kumar Grover (born 1961) is an Indian- American computer scientist. He is the originator of the Grover database search algorithm used in quantum computing. Grover's 1996 algorithm won renown as the second major algorithm proposed for quantum computing (after Shor's 1994 algorithm), and in 2017 was finally implemented in a scalable physical quantum system. Grover's algorithm has been the subject of numerous popular science articles. Grover received his bachelor's degree from the Indian Institute of Technology, Delhi in 1981 and his PhD in Electrical engineering from Stanford University in 1985. In 1984, he went to Bell Laboratories. He worked as a visiting professor at Cornell University Cornell University is a private statutory land-grant research university based in Ithaca, New York. It is a member of the Ivy League. Founded in 1865 by Ezra Cornell and Andrew Dickson White, Cornell was founded with the intention to tea ... from 1987 to 1994. He retired ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Controlled NOT Gate
In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-''X'' gate'','' controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986. The CNOT can be expressed in the Pauli basis as: : \mbox = e^= e^. Being both unitary and Hermitian, CNOT has the property e^=(\cos \theta)I+(i\sin \theta) U and U =e^=e^, and is involutory. The CNOT gate can be further decomposed as products of rotation operator gates and exactly one two qubit interaction gate, for example : \mbox =e^R_(-\pi/2)R_(-\pi/2)R_(-\pi/2)R_(\pi/2)R_(\pi/2). In general, any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Logic Gate
In quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates. For example, the reversible Toffoli gate can implement all Boolean functions, often at the cost of having to use ancilla bits. The Toffoli gate has a direct quantum equivalent, showing that quantum circuits can perform all operations performed by classical circuits. Quantum gates are unitary operators, and are described as unitary matrices relative to some basis. Usually we use the ''computational basis'', which unless we compare it with something, just means that for a ''d''-level quantum system (such as a qubit, a quantum register ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

David Wineland
David Jeffrey Wineland (born February 24, 1944) is an American Nobel-laureate physicist at the National Institute of Standards and Technology (NIST) physics laboratory. His work has included advances in optics, specifically laser-cooling trapped ions and using ions for quantum-computing operations. He was awarded the 2012 Nobel Prize in Physics, jointly with Serge Haroche, for "ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems". Early life and career Wineland was born in Wauwatosa, Wisconsin. He lived in Denver until he was three years old, at which time his family moved to Sacramento, California. Wineland graduated from Encina High School in Sacramento in 1961.Class of 1961 Graduation List
encinahighschool.com
In Sept. 1961 - Dec. 1963, he studied at