HOME
*





Q-series
In mathematical area of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer symbol (x)_n = x(x+1)\dots(x+n-1), in the sense that \lim_ \frac = (x)_n. The ''q''-Pochhammer symbol is a major building block in the construction of ''q''-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series. Unlike the ordinary Pochhammer symbol, the ''q''-Pochhammer symbol can be extended to an infinite product: (a;q)_\infty = \prod_^ (1-aq^k). This is an analytic function of ''q'' in the interior of the unit disk, and can also be considered as a formal power series in ''q''. The special case \phi(q) = (q;q)_\infty=\prod_^\infty (1-q^k) is known as Euler's function, and is important in combinatorics, numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-Pochhammer Symbol
In mathematical area of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer symbol (x)_n = x(x+1)\dots(x+n-1), in the sense that \lim_ \frac = (x)_n. The ''q''-Pochhammer symbol is a major building block in the construction of ''q''-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series. Unlike the ordinary Pochhammer symbol, the ''q''-Pochhammer symbol can be extended to an infinite product: (a;q)_\infty = \prod_^ (1-aq^k). This is an analytic function of ''q'' in the interior of the unit disk, and can also be considered as a formal power series in ''q''. The special case \phi(q) = (q;q)_\infty=\prod_^\infty (1-q^k) is known as Euler's function, and is important in combinatorics, number th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basic Hypergeometric Series
In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x''''n'' is called hypergeometric if the ratio of successive terms ''x''''n''+1/''x''''n'' is a rational function of ''n''. If the ratio of successive terms is a rational function of ''q''''n'', then the series is called a basic hypergeometric series. The number ''q'' is called the base. The basic hypergeometric series _2\phi_1(q^,q^;q^;q,x) was first considered by . It becomes the hypergeometric series F(\alpha,\beta;\gamma;x) in the limit when base q =1. Definition There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as :\;_\phi_k \left begin a_1 & a_2 & \ldots & a_ \\ b_1 & b_2 & \ldots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basic Hypergeometric Series
In mathematics, basic hypergeometric series, or ''q''-hypergeometric series, are ''q''-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series ''x''''n'' is called hypergeometric if the ratio of successive terms ''x''''n''+1/''x''''n'' is a rational function of ''n''. If the ratio of successive terms is a rational function of ''q''''n'', then the series is called a basic hypergeometric series. The number ''q'' is called the base. The basic hypergeometric series _2\phi_1(q^,q^;q^;q,x) was first considered by . It becomes the hypergeometric series F(\alpha,\beta;\gamma;x) in the limit when base q =1. Definition There are two forms of basic hypergeometric series, the unilateral basic hypergeometric series φ, and the more general bilateral basic hypergeometric series ψ. The unilateral basic hypergeometric series is defined as :\;_\phi_k \left begin a_1 & a_2 & \ldots & a_ \\ b_1 & b_2 & \ldots ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Q-series
In mathematical area of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer symbol (x)_n = x(x+1)\dots(x+n-1), in the sense that \lim_ \frac = (x)_n. The ''q''-Pochhammer symbol is a major building block in the construction of ''q''-analogs; for instance, in the theory of basic hypergeometric series, it plays the role that the ordinary Pochhammer symbol plays in the theory of generalized hypergeometric series. Unlike the ordinary Pochhammer symbol, the ''q''-Pochhammer symbol can be extended to an infinite product: (a;q)_\infty = \prod_^ (1-aq^k). This is an analytic function of ''q'' in the interior of the unit disk, and can also be considered as a formal power series in ''q''. The special case \phi(q) = (q;q)_\infty=\prod_^\infty (1-q^k) is known as Euler's function, and is important in combinatorics, numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Q-analog
In mathematics, a ''q''-analog of a theorem, identity or expression is a generalization involving a new parameter ''q'' that returns the original theorem, identity or expression in the limit as . Typically, mathematicians are interested in ''q''-analogs that arise naturally, rather than in arbitrarily contriving ''q''-analogs of known results. The earliest ''q''-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.Exton, H. (1983), ''q-Hypergeometric Functions and Applications'', New York: Halstead Press, Chichester: Ellis Horwood, 1983, , , ''q''-analogues are most frequently studied in the mathematical fields of combinatorics and special functions. In these settings, the limit is often formal, as is often discrete-valued (for example, it may represent a prime power). ''q''-analogs find applications in a number of areas, including the study of fractals and multi-fractal measures, and expressions for the entropy of chao ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler
Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of mathematics such as analytic number theory, complex analysis, and infinitesimal calculus. He introduced much of modern mathematical terminology and notation, including the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy and music theory. Euler is held to be one of the greatest mathematicians in history and the greatest of the 18th century. A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is the master of us all." Carl Friedrich Gauss remarked: "The study of Euler's works will remain the best school for the different fields of mathematics, and nothing else can replace it." Euler ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Hypergeometric Series
In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive coefficients indexed by ''n'' is a rational function of ''n''. The series, if convergent, defines a generalized hypergeometric function, which may then be defined over a wider domain of the argument by analytic continuation. The generalized hypergeometric series is sometimes just called the hypergeometric series, though this term also sometimes just refers to the Gaussian hypergeometric series. Generalized hypergeometric functions include the (Gaussian) hypergeometric function and the confluent hypergeometric function as special cases, which in turn have many particular special functions as special cases, such as elementary functions, Bessel functions, and the classical orthogonal polynomials. Notation A hypergeometric series is formally defined as a power series :\beta_0 + \beta_1 z + \beta_2 z^2 + \dots = \sum_ \beta_n z^n in which the ratio of successive coefficien ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Series (mathematics)
In mathematics, a series is, roughly speaking, a description of the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures (such as in combinatorics) through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance. For a long time, the idea that such a potentially infinite summation could produce a finite result was considered paradoxical. This paradox was resolved using the concept of a limit during the 17th century. Zeno's paradox of Achilles and the tortoise illustrates this counterintuitive property of infinite sums: Achilles runs after a tortoise, but when he reaches the position of the tortoise at the beginning ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler's Function
In mathematics, the Euler function is given by :\phi(q)=\prod_^\infty (1-q^k),\quad , q, A000203 On account of the identity \sum_ d = \sum_ \frac, this may also be written as :\ln(\phi(q)) = -\sum_^\infty \frac \sum_ d. Also if a,b\in\mathbb^+ and ab=\pi ^2, then :a^e^\phi (e^)=b^e^\phi (e^). Special values The next identities come from Ramanujan's Notebooks: : \phi(e^)=\frac : \phi(e^)=\frac : \phi(e^)=\frac : \phi(e^)=\frac(\sqrt-1)^ Using the Pentagonal number theorem, exchanging sum and integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ..., and then invoking complex-analytic methods, one derives : \int_0^1\phi(q)\,\mathrmq = \frac. References Notes Other * {{Leonhard Euler Number theory Q-analogs Leonhard Euler km:អនុគមន៍អឺលែ� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cauchy
Baron Augustin-Louis Cauchy (, ; ; 21 August 178923 May 1857) was a French mathematician, engineer, and physicist who made pioneering contributions to several branches of mathematics, including mathematical analysis and continuum mechanics. He was one of the first to state and rigorously prove theorems of calculus, rejecting the heuristic principle of the generality of algebra of earlier authors. He almost singlehandedly founded complex analysis and the study of permutation groups in abstract algebra. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific writer; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathematical physics. Bio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Factorial
In mathematics, the factorial of a non-negative denoted is the product of all positive integers less than or equal The factorial also equals the product of n with the next smaller factorial: \begin n! &= n \times (n-1) \times (n-2) \times (n-3) \times \cdots \times 3 \times 2 \times 1 \\ &= n\times(n-1)!\\ \end For example, 5! = 5\times 4! = 5 \times 4 \times 3 \times 2 \times 1 = 120. The value of 0! is 1, according to the convention for an empty product. Factorials have been discovered in several ancient cultures, notably in Indian mathematics in the canonical works of Jain literature, and by Jewish mystics in the Talmudic book '' Sefer Yetzirah''. The factorial operation is encountered in many areas of mathematics, notably in combinatorics, where its most basic use counts the possible distinct sequences – the permutations – of n distinct objects: there In mathematical analysis, factorials are used in power series for the exponential function ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]